The chemistry of heterocyclic compounds plays a crucial role in the synthesis of medicinals. This review focuses on the use of the thiazole nucleus for the synthesis of newer drug molecules through rational drug discovery. Here the synthetic feasibility, biochemical compatibility and the therapeutic utility of the thiazole derivatives is discussed briefly. Recently, it was observed that many chemotherapeutic agents have a thiazole nucleus. Hence, this article highlights the profound anti-cancer activities of some major thiazole bearing drug molecules with their important target sites. Along with this, the recent advancements in the development of thiazole based newer anti-cancer molecules and their promising activities are reviewed. The relevant data and some statistical analysis regarding the medicinal importance of thiazole nucleus will further promote the design and development of varieties of chemotherapeutic entities in the field of cancer treatment.
A series of eight quinoline-thiazole hybrid-bearing diazenylsulfonamides, 4a-4h, were synthesized and characterized by UV-Vis, FT/IR, 1H NMR and lC-MS. These compounds were formed when two prepared intermediate precursors of Schiff-base compounds, (E)-N-((2-chloroquinolin-3-yl)methylene)-4phenylthiazol-2-amine (3a) and (E)-N-((2-chloroquinolin-3-yl)methylene)-4-chlorophenylthiazol-2-amine (3b) were converted to the corresponding diazenyl compounds 4a-4h by treating and coupling with the individual diazonium salts of sulfa-drugs. The results of in vitro cytotoxic activity of the synthesized compounds in two cancer cell lines MCF 7 (human breast cancer cell line) and K562 (myelogenousleukemia cell line) have shown the IC50 values as given: 4b against MCF 7 19.52 and against K562 20.55µM; 4d against MCF 7 15.96 and against K562 13.05µM. Moreover, the compound 4-(((Z)-(2-chloroquinolin-3yl)(4-phenylthiazol-2-ylimino)methyl)diazenyl)benzenesulfonic acid (4d) induced maximum percentage of apoptosis. Furthermore, the in vitro antioxidant activity study revealed that among all the synthesized compounds, compound 4d has an excellent radical scavenging effect. Molecular docking was additionally performed to investigate the binding affinity of H-bonding interaction of synthesized compounds with a targeted enzyme and to compare it with the anticancer drugs, dasatinib, bosutinib and dacarbazine.
A series of several diazenyl Schiff base derivatives were designed and synthesized through azo coupling of diazotised primary amines with the novel synthesized Schiff base ligand (E)-N-((2-chloroquinolin-3-yl) methylene)-4-phenylthiazol-2-amine. All the synthesized compounds have been analysed by different spectral techniques such as elemental analysis, 1H NMR, FT-IR, UV-Vis and LC-MS for their structural confirmation. The above conjugates have been studied for their solvent effects by treating them with different solvents. The results of in vitro cytotoxic study of the synthesized compounds against MCF 7 (human breast cancer cell line) and K562 (Chronic Myeloid Leukemia cell line) revealed that some of the compounds show cytotoxic effect. However, the compounds (NZ)-N-(((4-bromo-3-methylphenyl) diazenyl) (2-chloroquinolin-3-yl) methylene)-4-phenylthiazol-2-amine: (5d) and 4-(((Z)-(2-chloroquinolin-3- yl)(4-phenylthiazol-2-ylimino)methyl)diazenyl)phenol (5e) showed potent cytotoxic activity in comparison to other compounds against MCF 7. Corroborating the results of anticancer activity, it is found to be observed that the compound 4- (((Z)- (2-chloroquinolin-3-yl) (4-phenylthiazol-2-ylimino)methyl) diazenyl) phenol (5e) showed excellent anticancer activity against MCF 7, which is further justified by the apoptosis study through Annexin V-FITC/PI analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.