Immunotherapy is revamping the therapeutic strategies for TNBC owing to its higher mutational burden and tumour-associated antigens. One of the most intriguing developments in cancer immunotherapy is the focus on peptide-based cancer vaccines. Thus, the current work aims to develop an efficient peptide-based vaccine against TNBC that targets Sema4A, which has recently been identified as a major regulator of TNBC progression. Initially, the antigenic peptides derived from Sema4A were determined and evaluated based on their capability to provoke immunological responses. The assessed epitopes were then linked with a suitable adjuvant (RpfB and RpfE) and appropriate linkers (AAY, GPGPG, KK and EAAAK) to preclude junctional immunogenicity. Eventually, docking and dynamics simulations are performed against TLR-2, TLR-4, TLR-7 and TLR-9 to assess the interaction between the vaccine construct and TLR receptors, as the TLR signalling pathway is critical in the host immune response. The developed vaccine was then exposed to in silico cloning and immune simulation analysis. The findings suggest that the designed vaccine could potentially evoke significant humoral and cellular immune responses in the intended organism. Considering these outcomes, the final multi-epitope vaccine could be employed to serve as an effective choice for TNBC management and may open new avenues for further studies.
Immunotherapy is revamping the therapeutic strategies for TNBC owing to its higher mutational burden and tumour-associated antigens. One of the most intriguing developments in cancer immunotherapy is the focus on peptide-based cancer vaccines. Thus, the current work aims to develop an efficient peptide-based vaccine against TNBC that targets Sema4A, which has recently been identified as a major regulator of TNBC progression. Initially, the antigenic peptides derived from Sema4A were determined and evaluated based on their capability to provoke immunological responses. The assessed epitopes were then linked with a suitable adjuvant (RpfB and RpfE) and appropriate linkers (AAY, GPGPG, KK, and EAAAK) to preclude junctional immunogenicity. Eventually, docking and dynamics simulations are performed against TLR-2, TLR-4, TLR-7 and TLR-9 to assess the interaction between the vaccine construct and TLR receptors, as the TLR signalling pathway is critical in the host immune response. The developed vaccine was then exposed to in silico cloning and immune simulation analysis. The findings suggest that the designed vaccine could potentially evoke significant humoral and cellular immune responses in the intended organism. Considering these outcomes, the final multi-epitope vaccine could be employed to serve as an effective choice for TNBC management and may open new avenues for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.