The next generation Internet of Things (IoT) applications are offering multiple services and run in a distributed heterogeneous environment. In such applications, Quality of Service (QoS) requirements are in jeopardy when the computing operations are only outsourced to the public cloud. For IoT applications a comprehensive framework that supports QoS-aware service placement in a fog computing environment is highly required. It is a challenging task to orchestrate the time critical IoT applications in the fog environment. To alleviate this problem, this paper proposes a novel multitier fog computing architecture called Deadline oriented Service Placement (DoSP) that provides the services both in fog and cloud nodes. This research work proposed a methodology to utilize low cost fog resources while ensuring that the response time satisfies a given time constraint. It uses the Genetic Algorithm (GA) to dynamically determine the service placement in the fog environment. In this work, we used the iFogSim simulator to model DoSP and measured the impact of the service placement technique in terms of service deadline. It has been observed that through the proposed solution, there is a reduction in service execution delay, i.e. approximately 10.19% of the overall response time to the EdgeWard and 2.58% to the cloud-only.
Software testing is one of the most crucial and analytical aspect to assure that developed software meets prescribed quality standards. Software development process invests at least 50% of the total cost in software testing process. Optimum and efficacious test data design of software is an important and challenging activity due to the nonlinear structure of software. Moreover, test case type and scope determines the quality of test data. To address this issue, software testing tools should employ intelligence based soft computing techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to generate smart and efficient test data automatically. This paper presents a hybrid PSO and GA based heuristic for automatic generation of test suites. In this paper, we described the design and implementation of the proposed strategy and evaluated our model by performing experiments with ten container classes from the Java standard library. We analyzed our algorithm statistically with test adequacy criterion as branch coverage. The performance adequacy criterion is taken as percentage coverage per unit time and percentage of faults detected by the generated test data. We have compared our work with the heuristic based upon GA, PSO, existing hybrid strategies based on GA and PSO and memetic algorithm. The results showed that the test case generation is efficient in our work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.