Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.
The effect of plant extract of Papaveraceae family Argemone mexicana is studied for use as a low cost and efficient corrosion inhibitor for mild steel in acidic environment. This plant extract is selected for the study of corrosion inhibition in view of its rich source of organic inhibiting molecules as proteins, amino acids, tannins, phenolic compounds, saponins, and flavonoids and nonalkaloids organic compounds such as fused benzene rings, hetero N atom rings, −OCH3, and −OH groups. A simple extraction method is adopted to obtain water-based plant extract. Argemone mexicana extract is for the first time used as an efficient inhibitor for mild steel in 1 M HCl. Weight loss and electrochemical methods are used to study the corrosion. Nearly 80% corrosion inhibition is observed at around 200 mg L–1 inhibitor concentration and maximum (92.5%) for 500 mg L–1 extract concentration in 1 M HCl. Inhibition mechanism is studied using UV–vis, electrochemical, and surface imaging techniques.
Present investigation deals with the study, to quantify the antibacterial property of silver nanoparticles (SNPs), synthesized by pulsed laser ablation (PLA) in aqueous media, on some human enteropathogenic gram-positive and gram-negative bacterial strains. Antibacterial property was studied by measuring the zone of inhibition using agar cup double-diffusion method, minimum inhibitory concentration by serial dilution method, and growth curve for 24 h. The results clearly show the potency of antibacterial property of PLA-synthesized SNPs and suggest that it can be used as an effective growth inhibitor against various pathogenic bacterial strains in various medical devices and antibacterial control systems.
Brain‐inspired (neuromorphic) computing that offers lower energy consumption and parallelism (simultaneous processing and memorizing) compared to von Neumann computing provides excellent opportunities in many computational tasks ranging from image recognition to speech processing. To accomplish neuromorphic computing, highly efficient optoelectronic synapses, which can be the building blocks of optoelectronic neuromorphic computers, are necessary. Currently, carbon nanotubes (CNTs), an attractive candidate to develop circuit‐level photonic synapses, provide weak light responses. The inferior photoresponse of CNTs increases the energy consumption of neuromorphic optoelectronic devices. Herein, a method to grow organic–inorganic halide perovskite quantum dots (PQDs) directly on multiwall CNTs (MWCNTs) to increase the photosensitivity of optoelectronic synapses is demonstrated. The new hybrid material synchronizes the high photoresponse of PQDs and the excellent electrical properties of MWCNTs to provide photonic memory under very low light intensity (125 µW cm−2). However, neat MWCNTs do not show any detectable light response at the tested light intensity, as high as 25 mW cm−2. Since the PQDs are grown directly on and in the MWCNTs, the hybrid PQD‐MWCNT provides a new direction for the future MWCNT‐based optoelectronic devices for neuromorphic computing with a potential to break the von Neumann bottleneck.
An effective and straightforward route for tailoring the self-supporting, exfoliated flexible graphite substrate (E-FGS) using electrochemical anodization is proposed. E-FGS has essential features of highly exfoliated, few-layered, two-dimensional graphite sheets with the size of several tens of micrometers, interconnected along the axis of the substrate surface. The novel hierarchical porous structural morphology of E-FGS enables large active sites for efficient electrolyte ion and charge transport when used as electrode material for a supercapacitor. In order to effectively utilize this promising E-FGS electrode for energy storage purpose, a ternary composite is further synthesized with pseudocapacitive polyhydroquinone (PHQ) and hydrous RuO 2 (hRO). hRO is synthesized via a sol−gel route, while electropolymerization is utilized for the electrodeposition of PHQ over E-FGS. Ultimately, the fabricated self-supporting E-FGS-based flexible supercapacitor is capable of delivering areal specific capacitance values as high as 378 mF cm −2 at a current density of 1 mA cm −2 . Addition of the pseudocapacitive component to the E-FGS texture leads to ∼10 times increase of the electrochemical charge storage capability. The imposition of mechanical forces to this flexible supercapacitor device results in trivial changes in electrochemical properties and is still capable of retaining 91% of the initial specific capacitance after 10 000 cycles. Alongside, the fabricated symmetrical solid-state flexible device exhibited a high energy density of 8.4 μWh cm −2 . The excellent performance along with the ease of synthesis and fabrication process of the flexible solid-state supercapacitor device using PHQ/hRO/E-FGS holds promise for large-scale production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.