Radiotherapy is not currently informed by the genetic composition of an individual patient's tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages. We combine results from our platform with genomic features to identify parameters that predict radiation sensitivity. We identify somatic copy number alterations, gene mutations and the basal expression of individual genes and gene sets that correlate with the radiation survival, revealing new insights into the genetic basis of tumour cellular response to DNA damage. These results demonstrate the diversity of tumour cellular response to ionizing radiation and establish multiple lines of evidence that new genetic features regulating cellular response after DNA damage can be identified.
Our results demonstrate an increased rate of local failure in patients with squamous cell carcinoma. Standard approaches for radiotherapy that demonstrate efficacy for a population may not achieve optimal results for individual patients. Establishing the differential dose effect of SBRT across histological groups is likely to improve efficacy and inform ongoing and future studies that aim to expand indications for SBRT.
TET2 is frequently mutated in myeloid neoplasms. Genetic TET2 deficiency leads to skewed myeloid differentiation and clonal expansion, but minimal residual TET activity is critical for survival of neoplastic progenitor and stem cells. Consistent with mutual exclusivity of TET2 and neomorphic IDH1/2 mutations, here we report that IDH1/2 mutant–derived 2-hydroxyglutarate is synthetically lethal to TET dioxygenase–deficient cells. In addition, a TET-selective small-molecule inhibitor decreases cytosine hydroxymethylation and restricted clonal outgrowth of TET2 mutant but not normal hematopoietic precursor cells in vitro and in vivo. Although TET inhibitor phenocopied somatic TET2 mutations, its pharmacologic effects on normal stem cells are, unlike mutations, reversible. Treatment with TET inhibitor suppresses the clonal evolution of TET2-mutant cells in murine models and TET2-mutated human leukemia xenografts. These results suggest that TET inhibitors may constitute a new class of targeted agents in TET2-mutant neoplasia. Significance: Loss-of-function somatic TET2 mutations are among the most frequent lesions in myeloid neoplasms and associated disorders. Here we report a strategy for selective targeting of residual TET dioxygenase activity in TET-deficient clones that results in restriction of clonal evolution in vitro and in vivo. See related video: https://aacrjournals.org/webinar-minimal-tet-activity-targetable-vulnerability-tet2-and-neomorphic-idh12-mutant
There has been little progress in the use of patient-derived xenografts (PDX) to guide individual therapeutic strategies. In part, this can be attributed to the operational challenges of effecting successful engraftment and testing multiple candidate drugs in a clinically workable timeframe. It also remains unclear whether the ancestral tumor will evolve along similar evolutionary trajectories in its human and rodent hosts in response to similar selective pressures (i.e., drugs). Herein, we combine a metastatic clear cell adenocarcinoma PDX with a timely 3 mouse x 1 drug experimental design, followed by a co-clinical trial to longitudinally guide a patient’s care. Using this approach, we accurately predict response to first- and second-line therapies in so far as tumor response in mice correlated with the patient’s clinical response to first-line therapy (gemcitabine/nivolumab), development of resistance and response to second-line therapy (paclitaxel/neratinib) before these events were observed in the patient. Treatment resistance to first-line therapy in the PDX is coincident with biologically relevant changes in gene and gene set expression, including upregulation of phase I/II drug metabolism (CYP2C18, UGT2A, and ATP2A1) and DNA interstrand cross-link repair (i.e., XPA, FANCE, FANCG, and FANCL) genes. A total of 5.3% of our engrafted PDX collection is established within 2 weeks of implantation, suggesting our experimental designs can be broadened to other cancers. These findings could have significant implications for PDX-based avatars of aggressive human cancers.
Chemokine (C-C motif) receptor 7 (CCR7), a class A subtype G-Protein Coupled Receptor (GPCR), is involved in the migration, activation and survival of multiple cell types including dendritic cells, T cells, eosinophils, B cells, endothelial cells and different cancer cells. Together, CCR7 signaling system has been implicated in diverse biological processes such as lymph node homeostasis, T cell activation, immune tolerance, inflammatory response and cancer metastasis. CCL19 and CCL21, the two well-characterized CCR7 ligands, have been established to be differential in their signaling through CCR7 in multiple cell types. Although the differential ligand signaling through single receptor have been suggested for many receptors including GPCRs, there exists no resource or platform to analyse them globally. Here, first of its kind, we present the cell-type-specific differential signaling network of CCL19/CCL21-CCR7 system for effective visualization and differential analysis of chemokine/GPCR signaling.Database URL: http:// www. netpath. org/ pathways? path_ id= NetPath_ 46.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.