Rationale GDF11 (Growth Differentiation Factor 11) is a member of the transforming growth factor β (TGFβ) super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH), and restoring GDF11 to normal levels in old mice rescued PCH. Objective To determine if and by what mechanism GDF11 rescues aging dependent PCH. Methods and Results 24-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in-vitro. After treatment, rGDF11 levels were significantly increased but there was no significant effect on either heart weight (HW) or body weight (BW). HW/BW ratios of old mice were not different from 8 or 12 week-old animals, and the PCH marker ANP was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle treated animals at baseline and remained unchanged at 1, 2 and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes (NRVM), to explore the putative anti-hypertrophic effects of GDF11, showed that GDF11 did not reduce NRVM hypertrophy, but instead induced hypertrophy. Conclusions Our studies show that there is no age-related PCH in disease free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.
Feeding biopharma pipelines with biotherapeutic candidates that possess desirable developability profiles can help improve the productivity of biologic drug discovery and development. Here, we have derived an in silico profile by analyzing computed physicochemical descriptors for the variable regions (Fv) found in 77 marketed antibody-based biotherapeutics. Fv regions of these biotherapeutics demonstrate significant diversities in their germlines, complementarity determining region loop lengths, hydrophobicity, and charge distributions. Furthermore, an analysis of 24 physicochemical descriptors, calculated using homology-based molecular models, has yielded five nonredundant descriptors whose distributions represent stability, isoelectric point, and molecular surface characteristics of their Fv regions. Fv regions of candidates from our internal discovery campaigns, human next-generation sequencing repertoires, and those in clinical-stages (CST) were assessed for similarity with the physicochemical profile derived here. The Fv regions in 33% of CST antibodies show physicochemical properties that are dissimilar to currently marketed biotherapeutics. In comparison, physicochemical characteristics of ∼29% of the Fv regions in human antibodies and ∼27% of our internal hits deviated significantly from those of marketed biotherapeutics. The early availability of this information can help guide hit selection, lead identification, and optimization of biotherapeutic candidates. Insights from this work can also help support portfolio risk assessment, in-licensing, and biopharma collaborations.
Deficiency of interleukin (IL)-36 receptor antagonist (DITRA) syndrome is a rare autosomal recessive disease caused by mutations in IL36RN. IL-36R is a cell surface receptor and a member of the IL1R family that is involved in inflammatory responses triggered in skin and other epithelial tissues. Accumulating evidence suggests that IL-36R signaling may play a role in the pathogenesis of psoriasis. Therapeutic intervention of IL-36R signaling offers an innovative treatment paradigm for targeting epithelial cell-mediated inflammatory diseases such as the life-threatening psoriasis variant called generalized pustular psoriasis (GPP). We report the discovery and characterization of MAB92, a potent, high affinity anti-human IL-36 receptor antagonistic antibody that blocks human IL-36 ligand (α, β and γ)-mediated signaling. In vitro treatment with MAB92 directly inhibits human IL-36R-mediated signaling and inflammatory cytokine production in primary human keratinocytes and dermal fibroblasts. MAB92 shows exquisite species specificity toward human IL-36R and does not cross react to murine IL-36R. To enable in vivo pharmacology studies, we developed a mouse cross-reactive antibody, MAB04, which exhibits overlapping binding and pharmacological activity as MAB92. Epitope mapping indicates that MAB92 and MAB04 bind primarily to domain-2 of the human and mouse IL-36R proteins, respectively. Treatment with MAB04 abrogates imiquimod and IL-36-mediated skin inflammation in the mouse, further supporting an important role for IL-36R signaling in epithelial cell-mediated inflammation.
The ability of antibodies to recognize their target antigens with high specificity is fundamental to their natural function. Nevertheless, therapeutic antibodies display variable and difficult-to-predict levels of nonspecific and self-interactions that can lead to various drug development challenges, including antibody aggregation, abnormally high viscosity, and rapid antibody clearance. Here we report a method for predicting the overall specificity of antibodies in terms of their relative risk for displaying high levels of nonspecific or self-interactions at physiological conditions. We find that individual and combined sets of chemical rules that limit the maximum and minimum numbers of certain solvent-exposed amino acids in antibody variable regions are strong predictors of specificity for large panels of preclinical and clinical-stage antibodies. We also demonstrate how the chemical rules can be used to identify sites that mediate nonspecific interactions in suboptimal antibodies and guide the design of targeted sublibraries that yield variants with high antibody specificity. These findings can be readily used to improve the selection and engineering of antibodies with drug-like specificity.
Rationale: Possible beneficial effects of Growth Differentiation Factor 11 (GDF11) on the normal, diseased, and aging heart have been reported, including reversing aging induced hypertrophy. These effects have not been well validated. High levels of GDF11 have also been shown to cause cardiac and skeletal muscle wasting. These controversies could be resolved if dose-dependent effects of GDF11 were defined in normal and aged animals as well as in pressure overload induced pathological hypertrophy. Objective: To determine dose-dependent effects of GDF11 on normal hearts and those with pressure overload induced cardiac hypertrophy. Methods and Results: 12–13-week-old C57BL/6 mice underwent transverse aortic constriction (TAC) surgery. One-week post TAC, these mice received recombinant GDF11 at one of 3 doses: 0.5 mg/kg, 1.0 mg/kg, or 5.0 mg/kg for up to 14 days. Treatment with GDF11 increased plasma concentrations of GDF11 and p-SMAD2 in the heart. There were no significant differences in the peak pressure gradients across the aortic constriction between treatment groups at one-week post-TAC. Two weeks of GDF11 treatment caused dose-dependent decreases in cardiac hypertrophy as measured by HW/TL ratio, myocyte cross sectional area, and LV mass. GDF11 improved cardiac pump function while preventing TAC-induced ventricular dilation and caused a dose-dependent decrease in interstitial fibrosis (in vivo), despite increasing markers of fibroblast activation and myofibroblast transdifferentiation (in vitro). Treatment with the highest dose (5.0mg/kg) of GDF11 caused severe body weight loss, with significant decreases in both muscle and organ weights and death in both sham and TAC mice. Conclusions: Although GDF11 treatment can reduce pathological cardiac hypertrophy and associated fibrosis while improving cardiac pump function in pressure overload, high doses of GDF11 cause severe cachexia and death. Use of GDF11 as a therapy could have potentially devastating actions on the heart and other tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.