Macroporous ceramic materials are ubiquitous in numerous energy-conversion and thermal-management systems. The morphology and material composition influence the effective thermophysical properties of macroporous ceramic structures and interphase transport in interactions with the working fluid. Therefore, tailoring these properties can enable significant performance enhancements by modulating thermal transport, reactivity, and stability. However, conventional ceramic-matrix fabrication techniques limit the ability for tailoring the porous structure and optimizing the performance of these systems, such as by introducing anisotropic morphologies, pore-size gradations, and variations in pore connectivity and material properties. In this work, an
Quantitative X-ray computed tomography (XCT) diagnostics for reacting flows are developed and demonstrated in application to premixed flames in open and optically inaccessible geometries. A laboratory X-ray scanner is employed to investigate methane/air flames that were diluted with krypton as an inert radiodense tracer gas. Effects of acquisition rate and tracer gas concentration on the signal-to-noise ratio are examined. It is shown that statistically converged three-dimensional attenuation measurements can be obtained with limited impact from the tracer gas and within an acceptable acquisition time. Specific aspects of the tomographic reconstruction and the experimental procedure are examined, with particular emphasis on the quantification of experimental uncertainties. A method is developed to determine density and temperature from the X-ray attenuation measurements. These experiments are complemented by one-and multidimensional calculations to quantify the influence of krypton on the flame behavior. To demonstrate the merit of XCT for optically inaccessible flames, measurements of a complex flame geometry in a tubular confinement are performed. The use of a coflow to provide a uniform tracergas concentration is shown to improve the quantitative temperature evaluation. These measurements demonstrate the viability of XCT for flame-structure analysis and multidimensional temperature measurements using laboratory X-ray systems. Further opportunities for improving this diagnostic are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.