Background
Orthodontic bonding and debonding procedures involve risk of damaging the enamel surface and changing its original morphology. The rough surface inhibits proper cleaning, invites plaque deposition, bacterial retention, and stain formation thus dampening the esthetic appearance of the teeth. Restoring the enamel to its original morphology is a challenge. Researches on better adhesive removal methods which can effectively remove the residual resin and restore it best to its original form are continuing till date. No study has compared four contemporary finishing systems for their efficiency on a single platform.
Aim
The objective of this study is to evaluate and compare enamel surface roughness after debonding using four different finishing and polishing systems.
Material and methods
Adhesive resin was removed from the buccal surface of 88 premolars after debonding with 4 groups. It included 22 teeth per group: group 1—One gloss system; group 2—Enhance finishing and polishing system; group 3—fiber reinforced stainbuster bur; and group 4—Soflex discs with wheels. Roughness was measured quantitatively and qualitatively with the help of surface roughness tester and scanning electron Microscope (SEM) respectively.
Results
No significant difference was found in baseline roughness in four groups. Highest post-polishing roughness was observed in Soflex group (4.62 μm) followed by One gloss system (3.36 μm), Enhance system (3.17 μm), and stainbuster bur (1.99 μm) (
p
value < 0.01).
Conclusion
Stainbuster bur created the smoothest enamel surface that was close to the natural enamel followed by Enhance system, One gloss system, and Soflex disc and wheels.
Background:Silver is known for its antimicrobial activity. Silver coating effectively reduces Lactobacillus acidophilus and Streptococcus mutans count, thus reducing chances of dental plaque and caries. This silver coating may have effect on frictional property of orthodontic wires.Aim:The aim of this study is to evaluate and compare frictional resistance of silver-coated and uncoated stainless steel (SS) wires.Methods:Forty SS wires were divided into four groups of 10 each: Group 1 – 0.017 × 0.025 inch SS wires (silver coated), Group 2 – 0.017 × 0.025 inch SS wires (control), Group 3 – 0.019 × 0.025 inch SS wires (silver coated), and Group 4 – 0.019 × 0.025 inch SS wires (control). Surface modification of wires was carried out by the thermal vacuum evaporation method with silver (10 nm size) using vacuum-coating unit model. The frictional resistances of all forty wires were checked on forty 0.022 × 0.028 inch slot central incisor brackets (SS wires and brackets from American Orthodontics, St Paul, USA) mounted on metal plates using universal testing machine.Results:There was no significant difference found in frictional resistance between silver-coated and uncoated 0.017 × 0.025 inch SS wires group (P = 0.854). Statistically significant reduction in frictional resistance was observed in 0.019 × 0.025 inch coated SS wires in comparison to uncoated wires (P = 0.032).Conclusion:Overall silver coating either did not affect the frictional resistance (0.017 × 0.025 inch SS wires) or reduced it (0.019 × 0.025 inch coated SS wires) compared to uncoated wires. Findings suggest that the use of silver-coated SS wires in routine orthodontic practice can be implemented after further in vivo human clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.