Phytohormones mediate the perception of insect-specific signals and the elicitation of defenses during insect attack. Large-scale changes in a plant's transcriptome ensue, but how these changes are regulated remains unknown. Silencing of RNA-directed RNA polymerase 1 (RdR1) makes Nicotiana attenuata highly susceptible to insect herbivores, suggesting that defense elicitation is under the direct control of small-RNAs (smRNAs). Using 454-sequencing, we characterized N. attenuata's smRNA transcriptome before and after insect-specific elicitation in wild-type (WT) and RdR1-silenced (irRdR1) plants. We predicted the targets of N. attenuata smRNAs in the genes related to phytohormone signaling (jasmonic acid, JA-Ile, and ethylene) known to mediate resistance responses, and we measured the elicited dynamics of phytohormone biosynthetic transcripts and phytohormone levels in time-course experiments with field-and glasshouse-grown plants. RdR1 silencing severely altered the induced transcript accumulation of 8 of the 10 genes, reduced JA, and enhanced ethylene levels after elicitation. Adding JA completely restored the insect resistance of irRdR1 plants. irRdR1 plants had photosynthetic rates, growth, and reproductive output indistinguishable from that of WT plants, suggesting unaltered primary metabolism. We conclude that the susceptibility of irRdR1 plants to herbivores is due to altered phytohormone signaling and that smRNAs play a central role in coordinating the large-scale transcriptional changes that occur after herbivore attack. Given the diversity of smRNAs that are elicited after insect attack and the recent demonstration of the ability of ingested smRNAs to silence transcript accumulation in lepidopteran larvae midguts, the smRNA responses of plants may also function as direct defenses.454-sequencing ͉ herbivore resistance ͉ JA signaling ͉ phytohormone regulation
MicroRNAs (miRNAs) constitute a recently discovered class of small non-coding RNAs that regulate expression of target genes either by decreasing the stability of the target mRNA or by translational inhibition. They are involved in diverse processes, including cellular differentiation, proliferation and apoptosis. Recent evidence also suggests their importance for cancerogenesis. By far the most important model systems in cancer research are mammalian organisms. Thus, we decided to compile comprehensive information on mammalian miRNAs, their origin and regulated target genes in an exhaustive, curated database called Argonaute (). Argonaute collects latest information from both literature and other databases. In contrast to current databases on miRNAs like miRBase::Sequences, NONCODE or RNAdb, Argonaute hosts additional information on the origin of an miRNA, i.e. in which host gene it is encoded, its expression in different tissues and its known or proposed function, its potential target genes including Gene Ontology annotation, as well as miRNA families and proteins known to be involved in miRNA processing. Additionally, target genes are linked to an information retrieval system that provides comprehensive information from sequence databases and a simultaneous search of MEDLINE with all synonyms of a given gene. The web interface allows the user to get information for a single or multiple miRNAs, either selected or uploaded through a text file. Argonaute currently has information on 839 miRNAs from human, mouse and rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.