The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ϳ80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ϳ250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes.
Acute pancreatitis (AP) is an inflammatory condition of the pancreas caused by an imbalance in factors involved in maintaining cellular homeostasis. Earliest events in AP occur within acinar cells accompanied by other principal contributors to the inflammatory response i.e. the endothelial cells, immunocytes (granulocytes, monocytes/macrophages, lymphocytes) and neutrophils. Monocytes/macrophages are important inflammatory mediators, involved in the pathophysiology of AP, known to reside in the peritoneal cavity (in the vicinity of the pancreas) and in peripancreatic tissue. Recent studies suggested that impaired clearance of injured acini by macrophages is associated with an altered cytokine reaction which may constitute a basis for progression of AP. This review focuses on the role of monocytes/macrophages in progression of AP and discusses findings on the inflammatory process involved.
The structure of Rv3717 determined to 1.7 Å resolution by Pt-SAD phasing reveals a unique autolysin that lacks a cell-wall-binding domain. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. Structural analysis reveals that Rv3717 utilizes a β-hairpin turn at its N-terminus to autoregulate its enzymatic activity.
Respiratory syncytial virus (RSV) is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM) causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.
We and others previously have reported that extract prepared from medicinal plant Tinospora cordifolia shows a wide spectrum of immunoaugmentary effects. Tinospora cordifolia was shown to upregulate antitumor activity of tumor-associated macrophages (TAM). In this article we present evidence to show that an alcoholic extract of Tinospora cordifolia (ALTC) enhances the differentiation of TAM to dendritic cells (DC) in response to granulocyte/macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor. DC differentiated in vitro from TAM that were harvested from tumor-bearing mice after i.p. administration of ALTC (200 mg/kg body weight) 2 days posttumor transplantation shows an enhanced tumor cytotoxicity and production of tumoricidal soluble molecules like TNF, IL-1, and NO. Adoptive transfer of these TAM-derived DC to Dalton's lymphoma-bearing mice resulted in prolongation of survival of tumor-bearing mice. This is the first report regarding the differentiation and antitumor functions of TAM-derived DC obtained from tumor-bearing host administered with ALTC. The possible mechanisms involved also are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.