West Nile virus (WNV) is a mosquito - borne virus of public health importance. Currently, there is no FDA approved vaccine available against WNV infection in humans. Therefore, the early diagnosis of the WNV infection is important for epidemiologic control and timely clinical management in areas where multiple Flaviviruses are endemic. The present study aimed to develop reverse transcription polymerase spiral reaction (RT-PSR) assay that rapidly and accurately detects the envelope (env) gene of WNV. RT-PSR assay was optimized at 63°C for 60 min using real - time turbidimeter or visual detection by the addition of SYBR Green I dye. The standard curve for RT-PSR assay was generated using the 10-fold serial dilutions of in vitro transcribed WNV RNA. To determine the detection limit of RT-PSR assay, an amplified product of conventional RT-PCR was in vitro transcribed as per standard protocol. The detection limit of the newly developed RT-PSR assay was compared with that of conventional RT-PCR and CDC reported TaqMan real-time RT-PCR using a serial 10-fold dilution of IVT WNV RNA. The detection limit of RT-PSR was found to be 1 RNA copy, which is 100-fold higher than that of conventional RT-PCR (100 copies). This suggests that RT-PSR assay is a valuable diagnostic tool for rapid and real-time detection of WNV in acute-phase serum samples. The assay was validated with a panel of 107 WNV suspected human clinical samples with signs of acute posterior uveitis and onset of febrile illness. Out of 107 samples, 30 were found positive by RT-PSR assay. The specificities of the selected primer sets were established by the absence of cross-reactivity with other closely related members viruses of the Flaviviruses, Alphaviruses, and Morbilliviruses groups. No cross - reactivity was observed with other viruses. To best of our knowledge, this is the first report describing the RT-PSR assay for the detection of RNA virus (WNV) in clinical samples. RT-PSR is a high throughput method and more than 30 reactions can be run at once in real-time turbidimeter. PSR assay has potential to be used for a rapid screening of large number of clinical samples in endemic areas during an outbreak.
Aim: West Nile encephalitis caused by infection with the West Nile virus (WNV) is endemic in many regions of the world and is a global public health threat. The aim of this report was to develop a method using colorimetry-based reverse-transcription loop-mediated isothermal amplification (cRT-LAMP) and RT-LAMP combined with lateral-flow dipstick (LFD) for rapidly detecting WNV in low-infrastructure settings. Methods and Results:The primers for the cRT-LAMP and RT-LAMP-LFD assays were designed based on env gene of the WNV. Primers concentration, temperature and time were optimized for cRT-LAMP and RT-LAMP-LFD. The diagnostic performance of the cRT-LAMP and RT-LAMP-LFD assays was evaluated using human serum samples from 110 patients who were clinically suspected to be infected with WNV. The RT-LAMP was performed in a heating block at 63°C for 40 min. The LAMP amplicons were visible in the lateral-flow dipstick within 5 min. The detection limit of the developed cRT-LAMP and RT-LAMP-LFD assays was 10 copies and this assay showed a high degree of specificity for WNV. Compared with quantitative real-time RT-PCR assay, the kappa value of cRT-LAMP and RT-LAMP-LFD were 0.970. Conclusions:These results showed that the newly developed WNV-specific cRT-LAMP and RT-LAMP-LFD assays can be employed as an alternative method for screening of WN-suspected human samples. The results revealed that the assay could potentially identify the virus without interference from human serum samples. Collectively, all results revealed that cRT-LAMP and RT-LAMP-LFD assays offer a suitable field-based diagnosis of WNV. Significance and Impact of the Study:The cRT-LAMP and LAMP-LFD platform for the detection of WNV is rapid, accurate and simple-to-perform. Our present method has not only a short turnaround time but also avoided cross-contamination problem. Moreover, the use of simple lateral flow dipsticks broadens its application potential for the point-of-care use in resource-limited settings during outbreak situations. To the best of our knowledge, this is the first report for the development of cRT-LAMP and LAMP-LFD assays for rapid, simple, specific and sensitive detection of WNV using human clinical samples and EvaGreen dye.
West Nile virus (WNV) causes West Nile fever and encephalitis worldwide. Currently, there are no effective drugs or vaccines available in the market to treat WNV infection in humans. Hence, it is of paramount importance to detect WNV early for the success of the disease control programs and timely clinical management in endemic areas. In the present paper, we report the development of real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for rapid and real-time detection of WNV targeting the envelope (env) gene of the virus. The RPA reaction was performed successfully at 39°C for 15 min in a real-time thermal cycler. The sensitivity of this assay was found similar to that of the quantitative real-time RT PCR (RT-qPCR) assay, which could detect 10 copies of the gene. The efficacy of the assay was evaluated with a panel of 110 WN suspected human samples showing the signs of retinitis, febrile illness and acute posterior uveitis. In comparison with RT-qPCR, RT-RPA showed a specificity of 100% (CI, 95.07–100%) and sensitivity of 96.15% (CI, 80.36–99.90%) with a negative (NPV) and positive predictive value (PPV) of 98.65 and 100%, respectively. The level of agreement between RT-RPA and reference RT-qPCR assay was shown to be very high. The turnaround time of real-time RPA assay is about 10-20 times faster than the RT-qPCR, which confirms its utility in the rapid and sensitive diagnosis of WNV infection. To the best of our knowledge, this is the first report which deals with the development of real-time RT-RPA assay for simple, rapid, sensitive, and specific detection of WNV in human clinical samples. The present RT-RPA assay proves to be a powerful tool that can be used for the rapid diagnosis of a large number of patient samples in endemic settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.