Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.
Osteoarthritis (OA) is a progressive disease of the joints characterized by degradation of articular cartilage. Although disease initiation may be multi-factorial, the cartilage destruction appears to be a result of uncontrolled proteolytic extracellular matrix destruction. A major component of the cartilage extracellular matrix is aggrecan, a proteoglycan that imparts compressive resistance to the tissue. Aggrecanase-mediated aggrecan degradation is a significant event in early stage OA. The relative contribution of individual ADAMTS-4 and ADAMTS-5 proteinases to cartilage destruction during OA has not been resolved completely. This review reveals that both ADAMTS-4/ADAMTS-5 are responsible for aggrecan degradation in a human model of OA, and is expected to list down the rational strategies which are being focussed for therapeutic intervention in OA.
Ovarian cancer (OVCA) inevitably acquires resistance to platinum chemotherapy and PARP inhibitors (PARPi). We show that acquisition of PARPi-resistance is accompanied by increased ATR-CHK1 activity and sensitivity to ATR inhibition (ATRi). However, PARPi-resistant cells are remarkably more sensitive to ATRi when combined with PARPi (PARPi-ATRi). Sensitivity to PARPi-ATRi in diverse PARPi and platinum-resistant models, including BRCA1/2 reversion and CCNE1 -amplified models, correlate with synergistic increases in replication fork stalling, double-strand breaks, and apoptosis. Surprisingly, BRCA reversion mutations and an ability to form RAD51 foci are frequently not observed in models of acquired PARPi-resistance, suggesting the existence of alternative resistance mechanisms. However, regardless of the mechanisms of resistance, complete and durable therapeutic responses to PARPi-ATRi that significantly increase survival are observed in clinically relevant platinum and acquired PARPi-resistant patient-derived xenografts (PDXs) models. These findings indicate that PARPi-ATRi is a highly promising strategy for OVCAs that acquire resistance to PARPi and platinum.
In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.