The ability to accurately measure and assess current and potential health care system capacities is an issue of local and national significance. Recent joint statements by the Institute of Medicine and the Agency for Healthcare Research and Quality have emphasized the need to apply industrial and systems engineering principles to improving health care quality and patient safety outcomes. To address this need, a decision support tool was developed for planning and budgeting of current and future bed capacity, and evaluating potential process improvement efforts. The Strategic Bed Analysis Model (StratBAM) is a discrete-event simulation model created after a thorough analysis of patient flow and data from Geisinger Health System's (GHS) electronic health records. Key inputs include: timing, quantity and category of patient arrivals and discharges; unit-level length of care; patient paths; and projected patient volume and length of stay. Key outputs include: admission wait time by arrival source and receiving unit, and occupancy rates. Electronic health records were used to estimate parameters for probability distributions and to build empirical distributions for unit-level length of care and for patient paths. Validation of the simulation model against GHS operational data confirmed its ability to model real-world data consistently and accurately. StratBAM was successfully used to evaluate the system impact of forecasted patient volumes and length of stay in terms of patient wait times, occupancy rates, and cost. The model is generalizable and can be appropriately scaled for larger and smaller health care settings.
In logistic regression models predicting participation, the most important predictors of participation were having at least one physical examination (OR 1.46, 95%-CI 1.34-1.59) in Whites and long-term membership in Hispanics (OR 1.38, 95%-CI 1.11-1.69). None of the restrictions significantly predicted participation in Blacks (p for interaction with race <0.001). Conclusions: The application of restrictions based on longer membership and regular physical examinations may increase recruitment of non-Hispanic White and Hispanic men for biobank participation.
The 3-day REDD model predicts high-risk patients with fair discriminative power. The discriminative power of the 30-day REDD model is also better than the previously reported models under similar settings. The 3-day REDD model has been implemented and is being used to identify patients at risk for AEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.