Available online A B S T R A C TThis review reports on the latest research results and applications of phenolic and polyphenolic compounds. Phenolic compounds, ubiquitous in plants, are an essential part of the human diet and are of considerable interest due to their antioxidant properties and potential beneficial health effects. These compounds range structurally from a simple phenolic molecule to complex high-molecular-weight polymers. There is increasing evidence that consumption of a variety of phenolic compounds present in foods may lower the risk of health disorders because of their antioxidant activity. When added to foods, antioxidants control rancidity development, retard the formation of toxic oxidation products, maintain nutritional quality, and extend the shelf-life of products. Due to safety concerns and limitation on the use of synthetic antioxidants, natural antioxidants obtained from edible materials, edible by-products and residual sources have been of increasing interest. This contribution summarizes both the synthetic and natural phenolic antioxidants, emphasizing their mode of action, health effects, degradation products and toxicology. In addition, sources of phenolic antioxidants are discussed in detail.
Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.
Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.
A B S T R A C TDate seed flour was used to produce protein hydrolysates using Alcalase (AL), Flavourzyme (FL) and Thermolysin (TH). Enzymes were used individually or in combination at a constant pH and temperature. The degree of hydrolysis ranged between 11 and 14%. The molecular weights of peptides determined, using a quadrupole orthogonal time-of-flight hybrid tandem mass spectrometer, ranged from 2062.9 ± 0.0 to 116,803.8 ± 0.4 Da. AL hydrolysate showed the lowest reducing power and ABTS radical scavenging activity, but a higher ACE inhibition and hydroxyl radical scavenging. Among all treatments, hydrolysates prepared using a combination of AL and FL exhibited the highest reducing power and metal chelation and high scavenging for ABTS, DPPH, hydroxyl radicals as well as ACE inhibitory activity. Combinations of AL and TH exhibited the highest ACE inhibitory activity with an IC50 value of 0.53 mg/mL. These results indicate that date seed protein hydrolysate could be used as a potential health promoting ingredient with antioxidant and ACE inhibitory activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.