Cell types differentiated from induced pluripotent stem cells (iPSCs) are frequently arrested in their development program, more closely resembling a fetal rather than an adult phenotype, potentially limiting their utility for downstream clinical applications. The fetal phenotype of iPSC-derived dendritic cells (ipDCs) is evidenced by their low expression of MHC class II and costimulatory molecules, impaired secretion of IL-12, and poor responsiveness to conventional maturation stimuli, undermining their use for applications such as immune-oncology. Given that iPSCs display an epigenetic memory of the cell type from which they were originally derived, we investigated the feasibility of reprogramming adult DCs to pluripotency to determine the impact on the phenotype and function of ipDCs differentiated from them. Using murine bone marrow-derived DCs (bmDCs) as proof of principle, we show here that immature DCs are tractable candidates for reprogramming using non-integrating Sendai virus for the delivery of Oct4, Sox2, Klf4, and c-Myc transcription factors. Reprogramming efficiency of DCs was lower than mouse embryonic fibroblasts (MEFs) and highly dependent on their maturation status. Although control iPSCs derived from conventional MEFs yielded DCs that displayed a predictable fetal phenotype and impaired immunostimulatory capacity in vitro and in vivo, DCs differentiated from DC-derived iPSCs exhibited a surface phenotype, immunostimulatory capacity, and responsiveness to maturation stimuli indistinguishable from the source DCs, a phenotype that was retained for 15 passages of the parent iPSCs. Our results suggest that the epigenetic memory of iPSCs may be productively exploited for the generation of potently immunogenic DCs for immunotherapeutic applications. K E Y W O R D S dendritic cell, epigenetic memory, immunostimulation, immunotherapy, induced pluripotent stem cell, maturation
Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic diarrheic intestinal infections in domestic and wild ruminants (paratuberculosis or Johne's disease) for which there is no effective treatment. Critical in the pathogenesis of MAP infection is the invasion and survival into macrophages, immune cells with ability to carry on phagocytosis of microbes. In a search for effective therapeutics, our objective was to determine whether human cathelicidin LL-37, a small peptide secreted by leuckocytes and epithelial cells, enhances the macrophage ability to clear MAP infection. In murine (J774A.1) macrophages, MAP was quickly internalized, as determined by confocal microscopy using green fluorescence protein expressing MAPs. Macrophages infected with MAP had increased transcriptional gene expression of pro-inflammatory TNF-α, IFN-γ, and IL-1β cytokines and the leukocyte chemoattractant IL-8. Pretreatment of macrophages with synthetic LL-37 reduced MAP load and diminished the transcriptional expression of TNF-α and IFN-γ whereas increased IL-8. Synthetic LL-37 also reduced the gene expression of Toll-like receptor (TLR)-2, key for mycobacterial invasion into macrophages. We concluded that cathelicidin LL-37 enhances MAP clearance into macrophages and suppressed production of tissue-damaging inflammatory cytokines. This cathelicidin peptide could represent a foundational molecule to develop therapeutics for controlling MAP infection.
Few topics in regenerative medicine have inspired such impassioned debate as the immunogenicity of cell types and tissues differentiated from pluripotent stem cells. While early predictions suggested that tissues derived from allogeneic sources may evade immune surveillance altogether, the pendulum has since swung to the opposite extreme, with reports that the ectopic expression of a few developmental antigens may prompt rejection, even of tissues differentiated from autologous cell lines. Here we review the evidence on which these contradictory claims are based in order to reach an objective assessment of the likely magnitude of the immunological challenges ahead. Furthermore, we discuss how the inherent properties of pluripotent stem cells may inform strategies for reducing the impact of immunogenicity on the future ambitions of regenerative medicine.
Digital dermatitis (DD) commonly associated with Treponema spp. infection is a prevalent infectious bovine foot disease characterized by ulcerative and necrotic lesions. Lesions associated with DD are often classified using the M-stage scoring system, with M0 indicating healthy heel skin and M4 indicating chronic lesions. Current treatments utilizing antimicrobials or chemical footbaths are often ineffective and rarely cure DD lesions. Understanding the function of the innate immune response in the pathogenesis of DD will help to identify novel therapeutic approaches. In this study, the expression of the local innate host defense peptides cathelicidins and β-defensins was investigated in cows with DD and associated with the presence of treponemes and inflammatory reactions. Samples from active ulcerative DD lesions (M2) had considerable epidermal neutrophilic infiltration and increased gene expression of β-defensin tracheal antimicrobial peptides compared to control skin. Samples from acute lesions also had elevated local Cxcl-8 and TLR4 gene expression and abundant treponemes as identified by direct visualization, immunohistochemistry, and culture. Conversely, the anti-inflammatory peptide IL-10 was elevated in skin from chronic (M4) lesions, whereas bovine cathelicidin myeloid antimicrobial peptide 28 (Bmap-28) was increased in skin from oxytetracycline-treated M2 lesions. Experiments using cultured human keratinocytes challenged with Treponema spp. isolated from clinical cases of bovine DD showed that structural products from treponemes are able to initiate the innate immune response, in part through TLR2 signaling. These findings indicate that neutrophil influx, Cxcl-8, and β-defensin are key markers of active DD. Cathelicidins and IL-10 seem important in response to treatment or during the chronic proliferative stages of the disease.
IntroductionCalves are highly susceptible to gastrointestinal infection with Cryptosporidium parvum (C. parvum), which can result in watery diarrhea and eventually death or impaired development. With little to no effective therapeutics, understanding the host’s microbiota and pathogen interaction at the mucosal immune system has been critical to identify and test novel control strategies.MethodsHerein, we used an experimental model of C. parvum challenge in neonatal calves to describe the clinical signs and histological and proteomic profiling of the mucosal innate immunity and microbiota shifts by metagenomics in the ileum and colon during cryptosporidiosis. Also, we investigated the impact of supplemental colostrum feeding on C. parvum infection.ResultsWe showed that C. parvum challenged calves experienced clinical signs including pyrexia and diarrhea 5 days post challenge. These calves showed ulcerative neutrophil ileitis with a proteomic signature driven by inflammatory effectors, including reactive oxygen species and myeloperoxidases. Colitis was also noticed with an aggravated mucin barrier depletion and incompletely filled goblet cells. The C. parvum challenged calves also displayed a pronounced dysbiosis with a high prevalence of Clostridium species (spp.) and number of exotoxins, adherence factors, and secretion systems related to Clostridium spp. and other enteropathogens, including Campylobacter spp., Escherichia sp., Shigella spp., and Listeria spp. Daily supplementation with a high-quality bovine colostrum product mitigated some of the clinical signs and modulated the gut immune response and concomitant microbiota to a pattern more similar to that of healthy unchallenged calves.DiscussionC. parvum infection in neonatal calves provoked severe diarrheic neutrophilic enterocolitis, perhaps augmented due to the lack of fully developed innate gut defenses. Colostrum supplementation showed limited effect mitigating diarrhea but demonstrated some clinical alleviation and specific modulatory influence on host gut immune responses and concomitant microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.