Cis boleti (Coleoptera: Ciidae) preferentially colonizes fungi from the genus Trametes that are known as important wood decomposers. The aim of our research was to investigate if C. boleti uses the chemical volatile composition of its fungal host, Trametes gibbosa, as a key attraction factor. Therefore, the T. gibbosa fruiting body volatiles were analysed by using gas chromatography-mass spectrometry, with parallel electroantennographic detection (GC-MS/EAD) using adults of C. boleti. Furthermore, we examined the behavioral responses of C. boleti to the T. gibbosa volatile compounds. The dominant component of the T. gibbosa fruiting body bouquet was 1-octen-3-ol. Other volatiles, like the aldehydes hexanal, nonanal, and (E,E)-2,4-decadienal and the terpene alpha-bisabolol, were present in minor quantities. 1-Octen-3-ol was released with a ratio of the (R)- and (S)-enantiomers of 93:7, respectively. Electroantennography (EAG) employing C. boleti antennae yielded consistently dominant responses to 1-octen-3-ol. GC-EAD and EAG responses to pure standard compounds showed that C. boleti also perceived other host fungal volatiles. A highly significant attraction to 1-octen-3-ol was observed in behavioral tests. Female beetles were significantly attracted to the (S)-(+)- enantiomer at 10 times lower doses than male beetles. Our finding is the first direct proof that ciid beetles use 1-octen-3-ol as a key cue for host finding.
The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.