In this work, we present a buffer-aided successive opportunistic relaying scheme that aims at improving the average capacity of the network when inter-relay interference arises between relays that are selected for simultaneous transmission and reception. We propose a relay selection policy that, by exploiting the benefits of buffering at the relays, decouples the receiving relay at the previous time slot to be the transmitting relay at the next slot. Furthermore, we impose an interference cancellation threshold allowing the relay that is selected for reception to decode and subtract the inter-relay interference. The proposed relaying scheme selects the relaying pair that maximises the average capacity of the relay network. Its performance is evaluated through simulations and comparisons with other state-of-the-art half-duplex and full-duplex relay selection schemes, in terms of outage probability, average capacity and average delay. The results reveal that a trade-off has to be made between improving the outage at the cost of reduced capacity and increased delay and vice versa. Finally, conclusions are drawn and future directions are discussed, including the need for a hybrid scheme incorporating both half-duplex and full-duplex characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.