The distance measure is the core idea of data mining techniques such as classification, clustering, and statistical analysis and so on. All clustering taxonomies such as partition, hierarchical, density, grid, model, fuzzy and graphs used to distance measures for the data point’s categorization under difference cluster, cluster construction and validation. Big data mining is the advanced concept of data mining respect to the big data dimensions. When traditional clustering algorithm is used under the big data mining the distance measure is needed for scalable under big data mining and support to a huge size dataset, heterogeneous data and sources, and velocity characteristics of the big data. From a theoretically, practically and the existing research perspective, the paper focuses on volume, variety, and velocity big data criterion for identifying a distance measure for the big data mining and recognize how to distance measure works under clustering taxonomy. This study also analyzed all distance measures accuracy with the help of a confusion matrix through clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.