The high growth of air traffic flow has increased more bottleneck traffic issues in the air traffic management (ATM) system. The challenges between flight flow, air traffic control service and airspace are the major key parameters which support capability of domestic and international air transportation need to be looked by stakeholders. Many models are designed to incorporate to address the potential bottleneck issues of ATM. However, in these models’ analysis was not clearly presented. The proposed research review paper presents an analysis and insights of different models used in an air traffic management which includes, Big Data, Artificial Neural Network, Cloud Computing and Enterprise models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.