Porphyromonas gingivalis is a gram-negative anaerobic bacterial species strongly associated with adult periodontitis. One of its distinguishing characteristics and putative virulence properties is the ability to agglutinate erythrocytes. We have previously reported the cloning of multiple hemagglutinin genes from P. gingivalis 381. Subsequent sequencing of clone ST 2 revealed that the cloned fragment contained only an internal portion of the gene which lacked both start and stop codons. We here report the cloning and sequencing of the entire gene, designated hagA, as well as its relationship to other genes of this species. By use of inverse PCR technology and the construction of several additional genomic libraries, the complete open reading frame of hagA was found to be 7,887 bp in length, encoding a protein of 2,628 amino acids with a molecular mass of 283.3 kDa, which is among the largest genes ever cloned from a prokaryote to date. Within its open reading frame, four large, contiguous, direct repeats (varying from 1,318 to 1,368 bp) were identified. The repeat unit (HArep), which is assumed to contain the hemagglutinin domain, is also present in other recently reported protease and hemagglutinin genes in P. gingivalis. Thus, we propose that hagA and the other genes which share the HArep sequence form a multigene family with hagA as a central member.
Porphyromonas gingivalis produces a variety of virulence factors that may have a function in the periodontal disease process. Determination of the role of these various factors in pathogenesis and identification of a means for protecting the host from the destructive effects of this organism are areas of vigorous investigation. In this study we demonstrate the potential of avirulent Salmonella typhimurium strains to stimulate a specific systemic and mucosal immune response to a cloned P. gingivalis hemagglutinin (HagB). An avirulent strain of S. typhimurium, X4072, expressing the hagB gene ofP. gingivalis 381 on the plasmid pDMD1 was intragastrically
Immunomodulation mediated by exogenous antibodies has been proposed as a vaccine strategy to improve immune protection against pathogenic microorganisms and suggested to contribute to protection following passive immunization. To test whether a monoclonal antibody directed against an adhesion epitope of the periodontal pathogen Porphyromonas gingivalis could influence the humoral immune response following mucosal immunization, BALB/c mice were immunized orally or intranasally with P. gingivalis alone or P. gingivalis coated with monoclonal antibody 61BG1.3. Differences in antigenic specificity of anti- P. gingivalis serum immunoglobulin G (IgG) were demonstrated between groups of mice that received monoclonal antibody-coated P. gingivalis versus those that received P. gingivalis alone by either route of immunization. Binding of monoclonal antibody 61BG1.3 to P. gingivalis prior to immunization did not influence the serum IgG subclass distribution. However, minor differences in subclass distribution were observed between the various routes of mucosal immunization. These results support the hypothesis that specific monoclonal antibody bound to a bacterial vaccine can alter the quality of the humoral immune response to that organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.