Epoxy/Clay nanocomposites with two organically modified montmorillonites (Cloisite 30B and Cloisite 15A) have been prepared. Cloisite 15A has higher cation exchange capacity, interlayer spancing and hydrofobicity than Cloisite 30B. Different methods were carried out to disperse the clay in the epoxy monomer (diglycidyl ether of bisphenol A) with and without solvent, using stirring and ultrasound sonication. The epoxy hardeners used were 4,4'-diaminodiphenylmethane and 4,4'-diaminodiphenylsulfone which generate high glass transition temperature epoxy thermosets. The content of clay in the nanocomposites ranged from 2 to 11 wt%. The effect of Cloisites on the curing reaction has been studied by differential scanning calorimetry, finding that the presence of Cloisite 30B accelerates the curing reaction. The glass transition temperature of the epoxy thermoset decreases when the clay content increases, due to the plasticizing effect of the alkylammonium cations. The dispersion of the layered silicates within the crosslinked epoxy matrix was studied by wide-angle X-ray diffraction. In all the cases, the nanocomposites show intercalated clay structures, being the interlayer clay spacing almost independent of the method of dispersion, of the clay content, and of hardener used. Moreover the d-spacing differences between C30B and C15A nanocomposites are insignificant. Epoxy molecules intercalate in a smaller proportion in C15A than in C30B, as it was deduced from the increase of the d-spacing. The dynamic mechanical thermal properties of these nanocomposites were also investigated. Nanocomposites with Cloisite 30B show higher values of storage modulus than neat epoxy, both in the glassy and in the rubbery states. However Cloisite 15A does not improve the epoxy storage modulus, and such divergent behavior agrees with the different intercalation of epoxy in the clays. The fracture surfaces of the nanocomposites analyzed by environmental scanning electron microscopy indicate an improvement of toughness.
Recently polymer nanocomposites have attracted great interest as much as in industry as in research laboratories, due to they often show remarkable improvement in their mechanical and thermal properties when are compared with the virgin polymers. Among nanocomposites, nanoclay-reinforced polymers have been widely studied, specifically, those formed by a thermosetting polymer matrix, like unsaturated polyester crosslinked resin reinforced with layered silicates, like montmorillonite. In this work we have prepared nanocomposites formed by an isophtalic unsaturated polyester crosslinked resin (UP) reinforced with different contents (2-10 wt%) of organic modified montmorillonite (OMMT). The UP/OMMT nanocomposites have been prepared following different procedures and the structural characterization has been carried out by using X-ray diffraction (XRD). In all the cases an increase of the d-spacing between layers of the OMMT has been detected. The objective of this study is to analyze the thermal and mechanical behaviour of nanocomposites. For all of the reinforced systems, the glass transition temperatures values, Tg, obtained by differential scanning calorimetry (DSC) and dynamic-mechanical thermal analysis, (DMTA) are higher than the corresponding ones to neat UP. On the other hand, the OMMTP mechanical behaviour has been evaluated by DMTA and by tensile tests. Both techniques reveal an increase in Young modulus, however, a decrease of the tensile strength is observed in all the reinforced systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.