The Pseudomonas aeruginosa FpvA receptor is a TonB-dependent outer membrane transport protein that catalyzes uptake of ferric pyoverdin across the outer membrane. Surprisingly, FpvA expressed in P. aeruginosa grown in an iron-deficient medium copurifies with a ligand X that we have characterized by UV, fluorescence, and mass spectrometry as being iron-free pyoverdin (apo-PaA). PaA was absent from FpvA purified from a PaA-deficient P. aeruginosa strain. The properties of ligand binding in vitro revealed very similar affinities of apo-PaA and ferric-PaA to FpvA. Fluorescence resonance energy transfer was used to study in vitro the formation of the FpvA-PaA-Fe complex in the presence of PaA-Fe or citrate-Fe. The circular dichroism spectrum of FpvA indicated a 57% beta-structure content typical of porins and in agreement with the 3D structures of the siderophore receptors FhuA and FepA. In the absence of the protease's inhibitors, a truncated form of FpvA lacking 87 amino acids at its N-terminus was purified. This truncated form still bound PaA, and its beta-sheet content was conserved. This N-terminal region displays significant homology to the N-terminal periplasmic extensions of FecA from Escherichia coli and PupB from Pseudomonas putida, which were previously shown to be involved in signal transduction. This suggests a similar function for FpvA. The mechanism of iron transport in P. aeruginosa via the pyoverdin pathway is discussed in the light of all these new findings.
Strains from the Mycobacterium fortuitum complex contain surface species-specific lipids allowing their precise identification. In M. fortuitum biovar. peregrinum two major glycopeptidolipids, of the C-mycoside type, were characterized by a combination of chemical analyses, NMR, and FAB mass spectrometry. Important information was obtained by mass spectrometry both on their molecular weight and on the peptide and saccharide sequences without any derivatization. The basic structure of the two compounds was shown to be [formula: see text] The disaccharide part linked O-glycosidically to alaninol was either 3,4-di-O-methyl-alpha-L-rhamnopyranosyl (1----2) 3,4-di-O-methyl-alpha-L-rhamnopyranoside (mycoside I) or 3-O-methyl-alpha-L-rhamnopyranosyl (1----2) 3,4-di-O-methyl-alpha-L-rhamnopyranoside (mycoside II). This is an unusual structure of a C-mycoside since neither 6-deoxytalose nor its derivatives are present. Moreover, the oligosaccharide part is linked to the alaninol residue instead of the allo-threonine.
A procedure for the separation and identification of small peptides from the water-soluble fraction of a goat cheese was developed. The water-soluble extract was ultrafiltered (1000 Da membrane cutoff), and peptides were isolated by sequential chromatography: size exclusion chromatography (HPLC-grade water), anion exchange chromatography (phosphate buffer gradient), and semipreparative reverse-phase high-performance liquid chromatography (water/acetonitrile gradient). The fractions obtained were analyzed by combined mass spectrometry methods including electrospray ionization, liquid secondary ionization, and tandem mass spectrometry to identify and to confirm the sequences of 28 tri- to octapeptides naturally appearing in goat cheese during ripening. Among these peptides, 26 are produced by degradation of caseins but do not correspond to the known specific cleavages due to chymosin. Only low correlation was found between hydrophobicity of peptides and HPLC elution time with acetonitrile gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.