Histone deacetylase inhibitors (HDACi) are active agents for peripheral T-cell lymphoma (PTCL). Anecdotally angioimmunoblastic T-cell lymphoma (AITL) appears to respond better than PTCL–not otherwise specified (NOS) to HDACi. The new World Health Organization classification shows that a subgroup of PTCL carries similarities in phenotype and gene expression profiling to AITL, comparable to T follicular helper (TFH) cells. The disease might behave similarly to AITL when treated with HDACi. We analyzed 127 patients with AITL or PTCL-NOS treated with HDACi at relapse as a single agent or in combination. We re-reviewed the pathology of all PTCL-NOS to identify the TFH phenotype. Patients received HDACi at relapse as a single agent in 97 cases (76%, 59 TFH, 38 non-TFH) or in combination in 30 cases (24%, 18 TFH, 12 non-TFH) including duvelisib, lenalidomide, lenalidomide plus carfilzomib, and pralatrexate. Seven PTCL-NOS had TFH phenotype; 2 PTCL-NOS were reclassified as AITL. Overall response rate (ORR) was 56.5% (28.9% complete response [CR]) in TFH and 29.4% (19.6% CR) in non-TFH phenotype patients (P = .0035), with TFH phenotype being an independent predictor of ORR (P = .009). Sixteen patients sufficiently responded to HDACi or HDACi in combination with another agent to proceed directly to allogeneic transplantation; 1 of 16 responded to donor lymphocyte infusion (12 TFH, 4 non-TFH). Our results, although retrospective, support that HDACi, as a single agent or in combination, may have superior activity in TFH-PTCL compared with non-TFH PTCL. This differential efficacy could help inform subtype-specific therapy and guide interpretation of HDACi trials.
Glutamine is a key nutrient required for sustaining cell proliferation, contributing to nucleotide, protein, and lipid synthesis. The mTOR complex 1 (mTORC1) is a highly conserved protein complex that acts as a sensor of nutrients, relaying signals for the shift from catabolic to anabolic metabolism. Although glutamine plays an important role in mTORC1 activation, the mechanism is not clear. Here we describe a leucine- and Rag-independent mechanism of mTORC1 activation by glutamine that depends on phospholipase D and the production of phosphatidic acid, which is required for the stability and activity of mTORC1. The phospholipase D-dependent activation of mTORC1 by glutamine depended on the GTPases ADP ribosylation factor 1 (Arf1), RalA, and Rheb. Glutamine deprivation could be rescued by α-ketoglutarate, a downstream metabolite of glutamine. This mechanism represents a distinct nutrient input to mTORC1 that is independent of Rag GTPases and leucine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.