Purpose
Ground vibration testing (GVT) results can be used as system parameters for predicting flutter, which is essential for aeroelastic clearance. This paper aims to compute GVT-based flutter in time domain, using unsteady air loads by matrix polynomial approximations.
Design/methodology/approach
The experimental parameters, namely, frequencies and mode shapes are interpolated to build an equivalent finite element model. The unsteady aerodynamic forces extracted from MSC NASTRAN are approximated using matrix polynomial approximations. The system matrices are condensed to the required shaker location points to build an aeroelastic reduced order state space model in SIMULINK.
Findings
The computed aerodynamic forces are successfully reduced to few input locations (optimal) for flutter simulation on unknown structural system (where stiffness and mass are not known) through a case study. It is demonstrated that GVT data and the computed unsteady aerodynamic forces of a system are adequate to represent its aeroelastic behaviour.
Practical implications
Airforce of every nation continuously upgrades its fleet with advanced weapon systems (stores), which demands aeroelastic flutter clearance. As the original equipment manufacturers does not provide the design data (stiffness and mass) to its customers, a new methodology to build an aeroelastic system of unknown aircraft is devised.
Originality/value
A hybrid approach is proposed, involving GVT data to build an aeroelastic state space system, using rationally approximated air loads (matrix polynomial approximations) computed on a virtual FE model for ground flutter simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.