During the last two decades, the resurgence of tuberculosis (TB) has been documented in both developed and developing nations, and much of this increase in TB burden coincided with human immunodeficiency virus (HIV) epidemics. Since then, the disease pattern has changed with a higher incidence of extrapulmonary tuberculosis (EPTB) as well as disseminated TB. EPTB cases include TB lymphadenitis, pleural TB, TB meningitis, osteoarticular TB, genitourinary TB, abdominal TB, cutaneous TB, ocular TB, TB pericarditis and breast TB, although any organ can be involved. Diagnosis of EPTB can be baffling, compelling a high index of suspicion owing to paucibacillary load in the biological specimens. A negative smear for acid-fast bacilli, lack of granulomas on histopathology and failure to culture Mycobacterium tuberculosis do not exclude the diagnosis of EPTB. Novel diagnostic modalities such as nucleic acid amplification (NAA) can be useful in varied forms of EPTB. This review is primarily focused on the diagnosis of several clinical forms of EPTB by polymerase chain reaction (PCR) using different gene targets.
We recently evaluated several tissue culture model systems for the study of invasion and intracellular multiplication of Mycobacterium tuberculosis. These model systems include a human alveolar pneumocyte epithelial cell line, a murine macrophage cell line (J774), and fresh human peripheral blood-derived macrophages. Our data indicated that the initial level of association of M. tuberculosis with human alveolar pneumocyte cells (2%) was less than that observed with fresh human peripheral blood macrophages (9%) or J774 murine macrophages (13%) within 6 h of the addition of the bacteria. M. tuberculosis replicated in association with the pneumocyte cells by more than 55-fold by day 7 postinfection. In contrast, total bacterial growth in the J774 cells and human macrophages was considerably less, with increases of only fourfold and threefold, respectively, over the same 7-day period. Amikacin, an aminoglycoside antimicrobial agent, was added to inhibit the growth of extracellular bacteria after the initial 6-h infection period. Decreases in viable counts were observed in all three cell cultures within the first 3 days after infection. However, unlike the case with either macrophage culture, intracellular bacterial CFU obtained from the infected pneumocytes increased by fourfold by day 7 after the addition of amikacin. These data indicate that M. tuberculosis infects and multiplies intracellularly in human lung epithelial cells and that these cells may be an alternative in vitro model for the study of intracellular multiplication of M. tuberculosis in the human lung.
Extracellular vesicles (EVs), the small circulating vesicles released from urine samples of tuberculosis (TB) patients, contain a pool of biomarkers. We recently detected Mycobacterium tuberculosis lipoarabinomannan (LAM) and CFP-10 (Rv3874) biomarkers from the urinary EVs of pulmonary TB (PTB) and extrapulmonary TB (EPTB) patients by immuno-polymerase chain reaction (I-PCR) assay and the results were compared with the analogous enzyme-linked immunosorbent assay (ELISA). The detection limits of both purified LAM and CFP-10 were determined to be 1 fg/mL with I-PCR, which was 106 times lower than ELISA. Detection of LAM and CFP-10 biomarkers in urinary EVs of TB patients by I-PCR showed superiority over ELISA. Notably, LAM I-PCR revealed sensitivities of 74.3 and 67.9% in PTB (n = 74) and EPTB (n = 53) patients, respectively, with specificities of 91.5–92.8% (n = 116). Moreover, the sensitivities attained with LAM I-PCR were significantly higher (P < 0.01) than with CFP-10 I-PCR. After further improving the sensitivity and specificity of the assay, our I-PCR based on LAM detection in urinary EVs may be used as an adjunct test for rapid diagnosis of TB.
Background: Mycobacteria have developed a number of pathways that provide partial protection against both reactive oxygen species (ROS) and reactive nitrogen species (RNS). We recently identified a locus in Mycobacterium marinum, mel2, that plays a role during infection of macrophages. The molecular mechanism of mel2 action is not well understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.