The combustion within the boiler burns fuel to create heat energy which then produces electrical power. The combustion of fuel is its reaction with oxygen available in the air. The amount of fuel that can be well burnt is limited by the quantity of oxygen. Once all the fuel is not burnt at all, some of it stays in the boiler and other quantity goes to the atmosphere. Most of the fuels used in the boiler are hydrocarbons which release hydrogen and carbon as residuals. It causes small efficiency and degradation of the air. It is needed to take the faction of air/fuel to the optimum value to reduce these problems. This paper provides different reviewed algorithms that control the combustion within the boiler and the role of environmental temperature. The author found that the separation of the oxygen from the air combined with the preheating both fuel and oxygen taking into account environmental temperature would provide better stoichiometric values, which improve the performance.
The control of the air-fuel ratio (AFR) is critical for the efficiency of the combustion. This is for achieving the better performance of the plant and result in high output energy. Different parameters influence AFR. This paper models AFR as a function of the inlet temperature, density, and pressure. Formulated models have been checked using recorded data from the site. The results show that the AFR increases by 1.5 units as the pressures of the gas increase by 0.6 bars but when it reaches 2.9 bar, AFR starts to decrease, 0.9% of the increase of the density leads to the decrease of the AFR of 0.4 in average. 3.5 o C rise of inlet temperature lift the AFR by 0.2; however, it starts to decrease when the temperature reaches 78 o C.
The control of the air-fuel ratio (AFR) is critical for the efficiency of the combustion. This is for achieving the better performance of the plant and result in high output energy. Computation of the AFR is gone considering the composition of the fuel regardless of the inlet pressure, density ad temperature of both fuel and the air. This paper models AFR as a function of the inlet temperature, density, and pressure. Formulated models have been checked using recorded data from the Jabana2 Oil Power Plant. The results show that the AFR increases by 1.5 units as the pressures of the gas increase by 0.6 bars but when it reaches 2.9 bar, AFR starts to decrease, 0.9% of the increase of the density leads to the decrease of the AFR of 0.4 in average. 3.5 o C rise of inlet temperature lift the AFR by 0.2; however, it starts to decrease when the temperature reaches 78 o C.
Estimation of optimal Air or oxygen is important for the combustion process to be efficient and produce more energy. This is to be based on each component of the fuel and the air, considering their respective pressure and density. At first, this research investigates the role of 2 , 2 , 2 present in combination with 4 , and the air on the flame temperature; using simulation with Cantera 2.4. Results have been compared and calibrated with field data from KivuWatt company. It then demonstrates the way to achieve optimum Air Fuel Ratio (AFR) for the various species of the fuel. The results estimated the flame temperature by means of the percentages of all species of the fuel and the air, as well as various conditions of pressure and temperature. Finally, it combines all to show different values of optimum AFR at various species percentages; and uses a python program to create an AFR calculator available online through the link provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.