Rapid, reliable, and continuous information is an essential component in disaster monitoring and management. Remote sensing data could be a solution, but often cannot provide continuous data due to an absence of global coverage and weather and daylight dependency. To overcome these challenges, this study makes use of weather and day/light independent Sentinel-1 data with a global coverage to monitor localized effects of different types of disasters using the Coherence Change-Detection (CCD) technique. Coherence maps were generated from Synthetic Aperture Radar (SAR) images and used to classify areas of change and no change in six study areas. These sites are located in Syria, Puerto Rico, California, and Iran. The study areas were divided into street blocks, and the standard deviation was calculated for the coherence images for each street block over entire image stacks. The study areas were classified by land-use type to reveal the spatial variation in coherence loss after a disaster. While temporal decorrelation exhibits a general loss in coherence over time, disaster occurrence, however, indicates a significant loss in coherence after an event. The variations of each street block from the average coherence for the entire image stack, as measured by a high standard deviation after a particular disaster, is an indication of disaster induced building damage.
ABSTRACT:The study focuses on two study areas: San Juan in Puerto Rico, which was affected by Hurricane Maria in September 2017, and Sarpol Zahab in Iran, which was one of the towns affected by an earthquake in November 2017. In our study, we generate coherence images, and classify them into areas of 'change' and 'no-change'. A statistical analysis is made by converting the coherence results into point data, creating street blocks for the study areas and integrating the point data into the street blocks to calculate the standard deviation over the whole stack of images. Additionally, Landsat imagery is used to create land-use classes, convert them to polygons and integrate the polygon classes to the coherence maps to determine the average coherence loss per class for each disaster. Results show 65% loss in coherence after the earthquake in Sarpol-e-Zahab and 75% loss in Puerto Rico after the Hurricane. Land-use classes show coherence losses to below 0.5 for each disaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.