Nineteen Phaeoacremonium species are currently known in South Africa. These have been reported from grapevines, fruit trees, fynbos twig litter and arthropods. In other countries some of these Phaeoacremonium species are also known from hosts such as European olive, quince and willow that commonly occur in the Western Cape Province of South Africa, where most South African records of Phaeoacremonium have been made. The aim of this study was to investigate the species diversity and host-range of Phaeoacremonium in the Western Cape Province of South Africa by characterising 156 isolates collected from 29 woody hosts. Phylogenetic analyses of combined actin and beta-tubulin datasets allowed for the identification of 31 species among the 156 isolates, including 13 new species and 3 known species that had not been recorded in South Africa previously. The new Phaeoacremonium species include P. album, P. aureum, P. bibendum, P. gamsii, P. geminum, P. junior, P. longicollarum, P. meliae, P. oleae, P. paululum, P. proliferatum, P. rosicola and P. spadicum. All previous records of P. alvesii in South Africa were re-identified as P. italicum, but both species were recovered during this survey. A total of 35 described Phaeoacremonium species are now known from South Africa, more than double the number reported from any other country. This high diversity reflects the high diversity of indigenous flora of the Cape Floral Region, a biodiversity hotspot mainly situated in the Western Cape Province. Paraphyly and incongruence between individual phylogenies of the actin and beta-tubulin regions complicated species delimitation in some cases indicating that additional phylogenetic markers should be investigated for use in Phaeoacremonium phylogenies to prevent misidentifications and the introduction of vague species boundaries.
Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.
A recent olive trunk disease survey performed in the Western Cape Province, South Africa, identified several fungi associated with olive trunk disease symptoms, including species of Basidiomycota, Botryosphaeriaceae, Coniochaetaceae, Calosphaeriaceae, Diaporthaceae, Diatrypaceae, Phaeomoniellaceae, Phaeosphaeriaceae, Symbiotaphrinaceae, Togniniaceae and Valsaceae. Many of the species recovered had not yet been reported from olive trees and therefore the aim of this study was to determine their pathogenicity towards this host. Pathogenicity tests were first conducted on detached shoots to select virulent isolates which were then used in field trials. During field trials, 2-year-old olive branches of 15-year-old trees were inoculated by inserting colonised agar plugs into artificially wounded tissue. Measurements were made of the internal lesions after 8 months. In total, 58 isolates were selected for the field trials. Species that formed lesions significantly larger than the control could be considered as olive trunk pathogens. These include Biscogniauxia rosacearum, Celerioriella umnquma, Coniochaeta velutina, Coniothyrium ferrarisianum, isolates of the Cytospora pruinosa complex, Didymocyrtis banksiae, Diaporthe foeniculina, Eutypa lata, Fomitiporella viticola, Neofusicoccum stellenboschiana, Nm. vitifusiforme, Neophaeomoniella niveniae, Phaeoacremonium africanum, Pm. minimum, Pm. oleae, Pm. parasiticum, Pm. prunicola, Pm. scolyti, Pm. spadicum, Pleurostoma richardsiae, Pseudophaeomoniella globosa, Punctularia atropurpurascens, Vredendaliella oleae, an undescribed Cytospora sp., Geosmithia sp., two undescribed Neofusicoccum spp. and four Xenocylindrosporium spp. Pseudophaeomoniella globosa can be regarded as one of the main olive trunk pathogens in South Africa, due to its high incidence from olive trunk disease symptoms in established orchards and due to its high virulence in pathogenicity trials.
Recent studies in grape-growing areas including Australia, California, and Spain have revealed an extensive diversity of Diatrypaceae species on grapevines showing dieback symptoms and cankers. However, in South Africa, little is known regarding the diversity of these species in vineyards. The aim of this study was, therefore, to identify and characterize Diatrypaceae species associated with dieback symptoms of grapevine in South Africa. Isolates were collected from dying spurs of grapevines aged 4 to 8 years old, grapevine wood showing wedge-shaped necrosis when cut in cross section as well as from perithecia on dead grapevine wood. The collected isolates were identified based on morphological characters and phylogenetic analyses of the internal transcribed spacer region (ITS) and β-tubulin gene. Seven Diatrypaceae species were identified on grapevine, namely Cryptovalsa ampelina, C. rabenhorstii, Eutypa consobrina, E. lata, E. cremea sp. nov., Eutypella citricola, and E. microtheca. The dying spurs yielded the highest diversity of species when compared with the wedge-shaped necrosis and/or perithecia. C. ampelina was the dominant species in the dying spurs, followed by E. citricola, whereas E. lata was the dominant species isolated from the wedge-shaped necroses and perithecia. These results confirm E. lata as an important grapevine canker pathogen in South Africa, but the frequent association of C. ampelina with spur dieback suggests that this pathogen plays a more prominent role in dieback than previously assumed. In some cases, more than one species were isolated from a single symptom, which suggests that interactions may be occurring leading to decline of grapevines. C. rabenhorstii, E. consobrina, E. citricola, E. microtheca, and E. cremea are reported for the first time on grapevine in South Africa.
Trunk disease fungal pathogens reduce olive production globally by causing cankers, dieback, and other decline-related symptoms on olive trees. Very few fungi have been reported in association with olive dieback and decline in South Africa. Many of the fungal species reported from symptomatic olive trees in other countries have broad host ranges and are known to occur on other woody host plants in the Western Cape province, the main olive production region of South Africa. This survey investigated the diversity of fungi and symptoms associated with olive dieback and decline in South Africa. Isolations were made from internal wood symptoms of 145 European and 42 wild olive trees sampled in 10 and 9 districts, respectively. A total of 99 taxa were identified among 440 fungal isolates using combinations of morphological and molecular techniques. A new species of Pseudophaeomoniella, P. globosa, had the highest incidence, being recovered from 42.8 % of European and 54.8 % of wild olive samples. This species was recovered from 9 of the 10 districts where European olive trees were sampled and from all districts where wild olive trees were sampled. Members of the Phaeomoniellales (mainly P. globosa) were the most prevalent fungi in five of the seven symptom types considered, the only exceptions being twig dieback, where members of the Botryosphaeriaceae were more common, and soft/white rot where only Basidiomycota were recovered. Several of the species identified are known as pathogens of olives or other woody crops either in South Africa or elsewhere in the world, including species of Neofusicoccum, Phaeoacremonium, and Pleurostoma richardsiae. However, 81 of the 99 taxa identified have not previously been recorded on olive trees and have unknown interactions with this host. These taxa include one new genus and several putative new species, of which four are formally described as Celerioriella umnquma sp. nov., Pseudophaeomoniella globosa sp. nov., Vredendaliella oleae gen. & sp. nov., and Xenocylindrosporium margaritarum sp. nov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.