Genetic mutations in the tau gene on chromosome 17 are known to cause frontotemporal dementias. We have identified a novel silent mutation (S305S) in the tau gene in a subject without significant atrophy or cellular degeneration of the frontal and temporal cortices. Rather the cellular pathology was characteristic of progressive supranuclear palsy, with neurofibrillary tangles concentrating within the subcortical regions of the basal ganglia. Two affected family members presented with symptoms of dementia and later developed neurological deficits including abnormality of vertical gaze and extrapyramidal signs. The third presented with dystonia of the left arm and dysarthria, and later developed a supranuclear gaze palsy and falls. The mutation is located in exon 10 of the tau gene and forms part of a stem-loop structure at the 5' splice donor site. Although the mutation does not give rise to an amino acid change in the tau protein, functional exon-trapping experiments show that it results in a significant 4.8-fold increase in the splicing of exon 10, resulting in the presence of tau containing four microtubule-binding repeats. This study provides direct molecular evidence for a functional mutation that causes progressive supranuclear palsy pathology and demonstrates that mutations in the tau gene are pleiotropic.
The proliferative phase of mammary alveolar morphogenesis is initiated during early pregnancy by rising levels of serum prolactin and progesterone, establishing a program of gene expression that is ultimately responsible for the development of the lobuloalveoli and the onset of lactation. To explore this largely unknown genetic program, we constructed transcript profiles derived from transplanted mammary glands formed by recombination of prolactin receptor (Prlr) knockout or wild-type mammary epithelium with wild-type mammary stroma. Comparison with profiles derived from prolactin-treated Scp2 mammary epithelial cells produced a small set of commonly prolactin-regulated genes that included the negative regulator of cytokine signaling, Socs2 (suppressor of cytokine signaling 2), and the ets transcription factor, E74-like factor 5 (Elf5). Homozygous null mutation of Socs2 rescued the failure of lactation and reduction of mammary signal transducer and activator of transcription 5 phosphorylation that characterizes Prlr heterozygous mice, demonstrating that mammary Socs2 is a key regulator of the prolactin-signaling pathway. Reexpression of Elf5 in Prlr nullizygous mammary epithelium restored lobuloalveolar development and milk production, demonstrating that Elf5 is a transcription factor capable of substituting for prolactin signaling. Thus, Socs2 and Elf5 are key members of the set of prolactin-regulated genes that mediate prolactin-driven mammary development.
The majority of cases with frontotemporal dementia (FTD) have no tau deposition in the brain, yet mutations in the tau gene lead to a similar clinical phenotype with insoluble tau depositing in neuropathological lesions. We report two tau gene mutations at positions +19 and +29, in the intronic sequences immediately following the stem loop structure in exon 10, which segregate with FTD. Exon-trapping experiments showed that these gene mutations alter the splicing out of exon 10 and produce an increase in tau isoforms with three microtubule binding domains (three repeat tau). Mutagenesis experiments demonstrated that the +19 mutation was responsible for the increase in three repeat tau, possibly by altering an intron silencer modulator sequence element found at this region of the gene. Microtubule binding experiments revealed a significant decrease in microtubule assembly with increasing amounts of three and decreasing amounts of four repeat tau. Brain autopsy was available in one case. Analysis of the type of soluble tau isoforms revealed an increase in three repeat tau and an absence of tau isoforms with exon 3 inserts. No insoluble tau was isolated in the tissue fractions, consistent with the absence of tau-positive histopathology. There was also an increase in tau degradation products suggestive of increased proteolysis. This increase in tau breakdown products was associated with TUNEL- and activated caspase-3-positive neurons identified histologically. These studies show that increases in soluble three repeat tau can be responsible for FTD in cases with tau gene mutations in the intronic region immediately adjacent to the stem loop in exon 10. These cases of FTD have tau isoforms (without exon 3 inserts) that do not form abnormal aggregates and appear more prone to proteolysis. The increase in tau proteolysis was associated with increased evidence of apoptosis. This mechanism of neurodegeneration may be more applicable to the majority of FTD cases, which do not accumulate insoluble tau deposits.
Prolactin (PRL) is one of a family of related hormones including growth hormone (GH) and placental lactogen (PL) that are hypothesized to have arisen from a common ancestral gene about 500 million years ago. Over 300 different functions of PRL have been reported, highlighting the importance of this pituitary hormone. PRL is also synthesized by a number of extra-pituitary tissues including the mammary gland and the uterus. Most of PRL's actions are mediated by the unmodified 23 kDa peptide, however, PRL may be modified post-translation, thereby altering its biological effects. PRL exerts these effects by binding to its receptor, a member of the class I cytokine receptor super-family. This activates a number of signaling pathways resulting in the transcription of genes necessary for the tissue specific changes induced by PRL. Mouse knockout models of the major forms of the PRL receptor have confirmed the importance of PRLs role in reproduction. Further knockout models have provided insight into the importance of PRL signaling intermediates and the advent of transcript profiling has allowed the elucidation of a number of PRL target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.