CCCTC-binding factor (CTCF) is an organizer of higher-order chromatin structure and regulates gene expression. Genetic studies have implicated mutations in CTCF in intellectual disabilities. However, the role of CTCF-mediated chromatin structure in learning and memory is unclear. We show that depletion of CTCF in postmitotic neurons, or depletion in the hippocampus of adult mice through viral-mediated knockout, induces deficits in learning and memory. These deficits in learning and memory at the beginning of adulthood are correlated with impaired long-term potentiation and reduced spine density, with no changes in basal synaptic transmission and dendritic morphogenesis and arborization. Cognitive disabilities are associated with downregulation of cadherin and learning-related genes. In addition, CTCF knockdown attenuates fear-conditioning-induced hippocampal gene expression of key learning genes and loss of long-range interactions at the BDNF and Arc loci. This study thus suggests that CTCF-dependent gene expression regulation and genomic organization are regulators of learning and memory.
CCCTC-binding factor (CTCF) is a regulator of chromatin organization and has direct effects on gene transcription. Mutations in CTCF have been identified in individuals with neurodevelopmental conditions. There are wide range of behaviors associated with these mutations, including intellectual disabilities, changes in temperament, and autism. Previous mice-model studies have identified roles for CTCF in excitatory neurons in specific behaviors, particularly in regards to learning and memory. However, the role of CTCF in inhibitory neurons is less well defined. In the current study, specific knockout of CTCF in parvalbumin-expressing neurons, a subset of inhibitory neurons, induced a specific behavioral phenotype, including locomotor abnormalities, anxiolytic behavior, and a decrease in social behavior. The anxiolytic and social abnormalities are detected before the onset of locomotor abnormalities. Immunohistochemical analysis revealed a disbalance in parvalbumin-expressing and somatostatin-expressing cells in these mice. Single nuclei RNA sequencing identified changes in gene expression in parvalbumin-expressing neurons that are specific to inhibitory neuronal identity and function. Electrophysiology analysis revealed an enhanced inhibitory tone in the hippocampal pyramidal neurons in knockout mice. These findings indicate that CTCF in parvalbumin-expressing neurons has a significant role in the overall phenotype of CTCF-associated neurodevelopmental deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.