Climate change is one of the biggest challenges of our times, even before the onset of the Coronavirus (COVID-19) pandemic. One of the main contributors to climate change is greenhouse gas (GHG) emissions, which are mostly caused by human activities such as the burning of fossil fuels. As the lockdown due to the pandemic has minimised human activity in major cities, GHG emissions have been reduced. This, in turn, is expected to lead to a reduction in the urban heat island (UHI) effect in the cities. The aim of this paper is to understand the relationship between human activity and the UHI intensity and to provide recommendations towards developing a sustainable approach to minimise the UHI effect and improve urban resilience. In this study, historical records of the monthly mean of daily maximum surface air temperatures collected from official weather stations in Melbourne, New York City, Tokyo, Dublin, and Oslo were used to estimate the UHI intensity in these cities. The results showed that factors such as global climate and geographic features could dominate the overall temperature. However, a direct relationship between COVID-19 lockdown timelines and the UHI intensity was observed, which suggests that a reduction in human activity can diminish the UHI intensity. As lockdowns due to COVID-19 are only temporary events, this study also provides recommendations to urban planners towards long-term measures to mitigate the UHI effect, which can be implemented when human activity returns to normal.
Numerical modelling of the plastic deformation and fracture during the high speed machining is highly challengeable. Consequently, there is a need for an advanced constitutive model and fracture criterion to make the numerical models more reliable. The aim of the present study is to extend the recent advanced static Lou-Yoon-Huh (LYH) ductile fracture creation to high strain rate and temperature applications such as machining. In the present work, the LYH static fracture creation was extended to machining conditions by introducing strain rate and temperature dependency terms. This extended LYH fracture criterion was calibrated over the wide range of stress triaxialities and different temperatures. Modified Khan- Huang-Liang (KHL) constitutive model along with the variable friction model was employed to predict the flow behaviour of work material during the machining simulation. Damage evolution method was coupled to identify the element deletion point during the machining simulation. Orthogonal machining experiments were carried out for an aerospace grade AA2024-T351 at cutting speeds varying between 100 and 400m/min with the feed rates varying between 0.1 and 0.3mm/rev. To assess the prediction capabilities of extended LYH fracture criterion numerical simulations were also carried out using Johnson-Cook (JC) fracture criterion under all experimental conditions. Specific cutting energy, chip morphology and compression ratio predictions were compared with the experimental data. Numerical predictions with coupled extended LYH criterion showed good agreement with experimental results compared to coupled JC fracture criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.