BackgroundAlzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by well-defined neuropathological brain changes including amyloid plaques, neurofibrillary tangles and the presence of chronic neuroinflammation. Objective: The brain penetrant BET bromodomain inhibitor JQ1 has been shown to regulate inflammation responses in vitro and in vivo, but its therapeutic potential in AD is currently unknown. Method: Three-month-old 3xTg mice were injected once a day with JQ1 (50 mg/kg) or vehicle for 15 weeks. At the end of the treatment learning and memory was assessed using the modified Barnes maze and the Y maze behavioral tests. Tissue from the brain and other organs was collected for molecular evaluation of neuroinflammation tau pathology and amyloid β. Results: JQ1 treatment reduced splenomegaly and neuroinflammation in the brain of treated mice where we observed a reduction in the expression of the pro-inflammatory modulators Il-1b, Il-6, Tnfa, Ccl2, Nos2 and Ptgs2. Additionally, JQ1-treated mice showed a reduction of tau phosphorylation at Ser396 in the hippocampus and frontal cortex while total levels of tau remained unaffected. On the other hand, JQ1 did not ameliorate learning and memory deficits in 7-month-old 3xTg mice. Conclusion: Taken together, our data suggest that BET bromodomain inhibitors hold the promise to be used for the treatment of neurological disorders characterized by neuroinflammation.
Misfolded tau spreads from cell to cell, and propagates in a prion-like manner. In vitro and in vivo models exist that recapitulate aspects of tau pathology. Microfluidic devices can recreate minimalistic, manipulatable neuronal arrays in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.