Aim:The rapid spread of cyanobacteria in water sources and reservoirs has caused serious environmental damage and public health problems, and consists in a problem that challenges the institutions responsible for providing water to the population. In this study, the quantification of microcystin, saxitoxins and cyanobacteria levels was performed over 3 years in the semi-arid reservoirs of Rio Grande do Norte (Brazil). In addition, we analyzed the seasonal distribution of cyanotoxins and the percentage of cyanobacteria and cyanotoxins which were above the limit established by Brazilian law.MethodsThe study was conducted between 2009 and 2011 in four dams with six sites: Armando Ribeiro Gonçalves (ARG) in Itajá, San Rafael (SR) and Jucurutu; Passagem das Traíras (PT); Itans and Gargalheiras (GARG). Cyanobacteria presence were quantified and identified and the presence of microcystins (MCYs) and saxitoxins (STXs) was investigated by ELISA.ResultsThe densities of cyanobacteria were found to be above the permitted in 76% of cases. The ELISA results showed that of the 128 samples analyzed, 27% were above the maximum allowed by the Brazilian Ministry of Health Order 2914/2011. A seasonal pattern for the presence of MCYs was found (0.00227 to 24.1954 µg.L–1), with the highest values in the rainy season. There was no clear seasonal pattern for STXs (0.003 to 0.766 µg.L–1).ConclusionsThis study showed the importance of establishing a water quality monitoring for human consumption and its potability standards since the concentration of MCYs in some samples was above the maximum limit allowed by Brazilian law, thus posing a risk to public health since the conventional water treatment is not able to eliminate these potent hepatotoxins.
AimTo determine the composition and biomass of functional groups around the vertical and temporal gradient correlated with environmental conditions and apply the index Q in a water-supply reservoir.MethodsWater samples were collected monthly (n = 92) between 2009 and 2011 in two points of the dam for physicochemical and biological analysis.ResultsThe pH, dissolved oxygen and water temperature showed significant differences between the photic and aphotic zones (p<0.05). The vertical variation of dissolved oxygen and water temperature, showed a profile of stratification. The phytoplankton community was represented by 11 functional groups: S1, M, H1, Lo, P, F, SN, J, W2, MP and R.ConclusionsThe vertical variations were less pronounced than the temporal variations in the phytoplankton community. The Q index pointed out poor water quality, corresponding to the current state of eutrophication in the reservoir and it was sensitive to responsive to environmental and hydrodynamic changes in these systems, demonstrating to be an appropriate tool for monitoring and evaluating the quality of water in tropical semi-arid reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.