BackgroundPotential health benefits are attributed to the antioxidant properties of green tea polyphenolic compounds. The main aim of the study was to evaluate the effects of a six-week green tea extract (GTE) supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor (BDNF) in men.MethodsSixteen young males involved in CrossFit training were randomized into two groups supplemented with GTE or placebo for six weeks. Each participant performed an exercise test for the evaluation of maximum oxygen uptake (VO2max) twice, i.e., before starting (1st trial) and after completing the supplementation combined with CrosFit workout (2nd trial). Venous blood samples were drawn at rest, immediately post-test and after one hour of recovery in order to estimate activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], reduced glutathione [GR]), non-enzymatic antioxidants (reduced glutathione [GSH], uric acid [UA], total phenolics), total antioxidant capacity (FRAP), lipid peroxidation products (TBARS), and BDNF.ResultsExcept for a significantly higher SOD activity and FRAP level recorded at rest and post-exercise in the 2nd trial compared to the corresponding values in the 1st trial, no significant differences were recorded among other assayed measures such as CAT, GPx, GR, GSH and BDNF. Moreover, a percentage increase in FRAP level was twice as high after six weeks’ GTE consumption than after placebo. Regardless of the trial, an increase in plasma UA concentration and a decrease in plasma total phenolics level were observed after exercise test. Plasma TBARS concentrations were significantly higher in PLA group after six weeks’ CrossFit training, while in GTE group they were slightly lower compared to the corresponding values in the 1st trial. Moreover, there was a significant inverse correlation between FRAP and TBARS in the GTE-supplemented group (r = − 0.40, p < 0.05).ConclusionsA six weeks’ consumption of GTE had marginal effect on aerobic capacity and serum BDNF level in CrossFit-trained men, but it caused a marked increase in the blood antioxidant capacity and a moderate attenuation of the training-induced lipid peroxidation.
The objective of this research was to determine the effectiveness of intermittent fasting (IF) in reducing body fat and lowering body mass index. An additional objective was to determine the feasibility of applying IF in overweight women over 60 years of age, which was assessed by the ratio of subjects who resigned from the diet plan. This study included a group of 45 women over 60 years of age. The intervention in the experimental group involved complete abstinence from food intake for 16 h per day, from 20:00 p.m. to 12:00 a.m. (the next day). The results demonstrated that the body weight in the subjects in the experimental group (EXP) group decreased by almost 2 kg and this decrease was visible in the remaining parameters related to body fat mass. The skeletal muscle mass did not change significantly, which indicates an actual decrease in the fat mass. The proportion of subjects who did not succeed in following the prescribed diet plan was 12%. The application of intermittent fasting in female subjects over 60 years of age resulted in positive changes in body composition. Time-restricted feeding (TRF) was characterized by a lower resignation rate compared to other diets involving intermittent fasting.
Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF) level in healthy, physically active young men, randomly allocated to two groups (n = 9 each). At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP), and serum brain-derived neurotrophic factor (BDNF). Our results show that six weeks’ supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO2max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.
Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.
Differential scanning calorimetry (DSC) has been used for the detection of post-exercise changes in blood serum resulting from participation in the CrossFit (CF) training combined with green tea extract (GTE) supplementation. Blood samples from 20 well-trained men were collected at rest, immediately post-exercise and after 1 h of recovery in two trials: first before and second after CF training combined with GTE or placebo administration in the supplemented (S) and control (C) groups, respectively. Selected muscle damage biomarkers have been compared in different phases of the experiment. A significant increase in blood lactate content has been observed post-exercise in both trials in both participants' groups. The opposite trends have been noted for the C and S groups in creatine kinase (CK) activity changes recorded during the first to the second trial: an increase in CK for the control and a decrease for the supplemented group in all phases of the experiment: pre-exercise, post-exercise and after recovery. In the second trial, all CK values for the S group have been found significantly lower than the corresponding values recorded in the C group. These results suggest a mitigate effect of GTE supplementation on post-training muscle damage. DSC results did not reveal clear effects of training nor GTE supplementation on serum denaturation transition. However, interesting dependences of thermodynamic parameters describing this transition have been observed in different phases of the experiment. Statistically significant negative correlations have been found between post-training VO 2max and post-exercise thermodynamic parameters associated with haptoglobin contribution to serum denaturation transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.