It is well documented that Southern Poland is one of the most polluted areas in Europe due to the highest airborne concentrations of particulate matter (PM). Concentrations of fine particles are especially high in winter. Apart from detailed number concentrations, it is essential to accurately identify and quantify specific particulate pollution sources. Only a few Polish research centers are involved in such experiments—among them is Krakow research group. For the most part, research focuses on collecting 24-h average samples from stationary PM samplers at ambient monitoring sites and quantifying the specific elements and chemical constituents in PM. This approach includes modeling methods that can use the variability in physical and chemical PM characteristics as an input dataset to identify possible sources of the particles. The objective of this paper is to provide research results based on data collected from June 2018 to May 2019 from a single monitoring station at a central urban site. Careful comparison of data obtained prior to a 2019 law prohibiting solid fuel burning in the city of Krakow with data (2019–2020) when a regulation went into effect should indicate progress by noting lower PM levels. This work has shown that the method applied and Krakow results might be of interest to the broader community in regions of high PM concentration.
The EU directive 2013/39/EU has incorporated four biocidal compounds as priority substances: diuron, isoproturon, cybutryne, and terbutryn. The research was undertaken to determine the concentration of biocides in surface waters in three locations in southern Poland: the Wisła River in Kraków, the Wisłoka River in Mielec, and the drainage ditch draining water from arable fields located near Mielec. Environmental samples were taken in two series: winter (February) and spring (May and June). The analyses were carried out using gas chromatography with mass spectrometry. The seasonality of biocides in surface waters was observed. In winter samples, the concentrations were below MQL, while in spring, they ranged from a few to several dozen nanograms per liter. The highest concentrations of all analyzed compounds were recorded in water taken from the Wisła River. According to directive 2013/39/EU, the maximum allowable concentration was exceeded only in the case of cybutryne in water from the Wisła, both in May and in June. The assessment of the toxicity with the tested compounds was defined based on the Environmental Risk Assessment method. Low risk was estimated for diuron and isoproturon, while moderate risk for terbutryn and cybutryne.
The objective of this research was to evaluate the seasonal variation of the chemical composition of PM10 including polycyclic aromatic hydrocarbons (PAHs) and 1,3,5-triphenylbenzene (135TPB), which is a well known marker of plastic combustion. The presented work is a part of the project concerning assessment of air quality of small cities around Krakow agglomeration. Monitoring campaign was conducted between February and October 2017 in Wadowice, a small city in Krakow agglomeration, South Poland. To widen the knowledge of Krakow's agglomeration air quality, other aerosol chemical components were analyzed. Ion chromatography (IC) was used for analysis of cations and anions, while gas chromatography-mass spectrometry (GC-MS) was used for PAHs. Samples were also analyzed for OC/EC (organic/elemental carbon) by thermal-optical analysis with a Sunset Laboratory carbon analyzer, Sunset Inc. The co-combustion of plastic in addition to conventional fuels and the respective impact on air quality is evaluated via the concentration of the marker compound 135TPB. Co-combustion of plastics with fuels resulted in a higher abundance of fluorene and most of 4-6 ring PAHs, in agreement with recent literature. Authors proved that other sources besides plastic burning, including road transport, residential heating, residential combustion, industrial emissions, affect the air quality in South Poland. The modeling tool Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA's Air Resources Laboratory, was used to define the possible areas outside Wadowice contributing to urban air pollution.
In large urban agglomerations, car traffic is one of the main sources of particulate matter. It consists of particulate matter directly generated in the process of incomplete liquid fuel burning in vehicle engine, secondary aerosols formed from exhaust gaseous pollutants (NOx, SO2) as well as products of tires, brake pads and pavement abrasion. Krakow is one of the cities in Europe with the highest concentrations of particulate matter. The article presents the results of combined elemental, chemical and isotopic analyses of particulate matter PM10 at two contrasting urban environments during winter and summer seasons. Daily PM10 samples were collected during the summer and winter seasons of 2018/2019 at two stations belonging to the network monitoring air quality in the city. Mean PM10 concentrations at traffic-dominated stations were equal to 35 ± 7 µg/m3 and 76 ± 28 µg/m3 in summer and winter, respectively, to be compared with 25.6 ± 5.7 µg/m3 and 51 ± 25 µg/m3 in summer and winter, respectively, recorded at the urban background station. The source attribution of analyzed PM10 samples was carried out using two modeling approaches: (i) The Positive Matrix Factorization (PMF) method for elemental and chemical composition (concentrations of elements, ions, as well as organic and elemental carbon in daily PM10 samples), and (ii) Isotope Mass Balance (IMB) for 13C and 14C carbon isotope composition of carbonaceous fraction of PM10. For PMF application, five sources of particulate matter were identified for each station: fossil fuel combustion, secondary inorganic aerosols, traffic exhaust, soil, and the fifth source which included road dust, industry, construction work. The IMB method allowed the partitioning of the total carbon reservoir of PM10 into carbon originating from coal combustion, from biogenic sources (natural emissions and biomass burning) and from traffic. Both apportionment methods were applied together for the first time in the Krakow agglomeration and they gave consistent results.
Krakow is a city in southern Poland inhabited by about 741,000 people. However, Krakow’s agglomeration includes neighboring cities, hence more than 1 million people live there. The agglomeration is struggling with the problem of air pollution. In 2016, admissible average annual concentrations of PM10 (40 μg / m3) were exceeded at all measuring points. Furthermore, daily PM10 concentrations were regularly exceeded in the winter, which is associated with increased coal combustion during this period. Fortunately, interest in the subject of air quality in the world is constantly growing. People are more often aware of the negative impact on health of chemical compounds present in particulate matter (PM) such as Polycyclic Aromatic Hydrocarbons (PAHs), which were proved to be cancerogenic and mutagenic for people. That is why it is so important to study their presence in the ambient air. PM10 collected in the center of Wadowice (22.12.2016 – 13.10.2017) were investigated. PAHs were extracted from particulate matter and analysed applying the GC/MS technique. The results are discussed in the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.