The generation of singlet oxygen in aqueous colloids of nanocrystalline TiO2 (anatase) modified by organic chelating ligands forming surface Ti(IV) complexes was studied. Detailed studies revealed a plausible and to date unappreciated influence of near-infrared irradiation on singlet oxygen generation at the surface of TiO2. To detect (1)O2, direct and indirect methods have been applied: a photon counting technique enabling time-resolved measurements of (1)O2 phosphorescence, and fluorescence measurements of a product of singlet oxygen interaction with Singlet Oxygen Sensor Green (SOSG). Both methods proved the generation of (1)O2. Nanocrystalline TiO2 modified with salicylic acid appeared to be the most efficient photosensitizer among the tested materials. The measured quantum yield reached the value of 0.012 upon irradiation at 355 nm, while unmodified TiO2 colloids appeared to be substantially less efficient generators of singlet oxygen with the corresponding quantum yield of ca. 0.003. A photocatalytic degradation of 4-chlorophenol, proceeding through oxidation by OH˙, was also monitored. The influence of irradiation conditions (UV, vis, NIR or any combination of these spectral ranges) on the generation of both singlet oxygen and hydroxyl radicals has been tested and discussed. Simultaneous irradiation with visible and NIR light did not accelerate OH˙ formation; however, for TiO2 modified with catechol it influenced (1)O2 generation. Singlet oxygen is presumably formed according to Nosaka's mechanism comprising O2˙(-) oxidation with a strong oxidant (hole, an oxidized ligand); however, the energy transfer from NIR-excited titanium(iii) centers (trapped electrons) plays also a plausible role.
SummaryA hybrid enzymatic/photocatalytic approach for the conversion of CO2 into methanol is described. For the approach discussed here, the production of one mol of CH3OH from CO2 requires three enzymes and the consumption of three mol of NADH. Regeneration of the cofactor NADH from NAD+ was achieved by using visible-light-active, heterogeneous, TiO2-based photocatalysts. The efficiency of the regeneration process is enhanced by using a Rh(III)-complex for facilitating the electron and hydride transfer from the H-donor (water or a water–glycerol solution) to NAD+. This resulted in the production of 100 to 1000 mol of CH3OH from one mol of NADH, providing the possibility for practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.