A common practice in modern QSAR modelling is to derive models by variable selection methods working on large descriptor pools. As pointed out previously, this is intrinsically burdened with the risk of finding random correlations. Therefore it is desirable to perform tests showing the performance of models built on random data. In this contribution, we introduce a simple and freely available software tool SCRAMBLE’N’GAMBLE that is aimed at facilitating data preparation for y-randomization and pseudo-descriptors tests. Then, four close-to-real-world modelling situations are analysed. The tests indicate what the quality of obtained QSAR models is like in comparison to chance models derived from random data. The non-randomness is not the only requirement for a good QSAR model, however, it is a good practice to consider it together with internal statistical parameters and possible physical interpretations of a model.Electronic supplementary materialThe online version of this article (doi:10.1007/s11696-017-0215-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.