Considering the central role of PKC in mast cell activation, PKC inhibition could, at least partially, explain the observed inhibitory effects of CMT-3. The inhibition of the key proinflammatory functions of mast cells by CMT-3 suggests its potential clinical usefulness in the treatment of allergic and inflammatory disorders.
Background and purpose: Recent findings suggest the importance of mast cells in the pathogenesis of rheumatoid arthritis and their potential as a therapeutic target. Tranilast is an anti-allergic compound with a potent membrane-stabilizing effect on mast cells and a wide range of anti-inflammatory effects, thus may be advantageous in the treatment of arthritis. Here, we have evaluated the effects of tranilast on the progression of collagen-induced arthritis in mice. Experimental approach: Tranilast (400 mg·kg) was orally administered for 8 weeks to mice with established collageninduced arthritis. Arthritis was assessed by clinical signs and X-ray scores. In paw tissue, the numbers of mast cells and osteoclasts were measured by histological analysis, and several inflammatory factors were assessed by RT-PCR and Western blot analysis.* Key results: TNF-a-positive mast cells were present extensively throughout the inflamed synovium of vehicle-treated arthritic mice, with some mast cells in close proximity to osteoclasts in areas of marked bone and cartilage destruction. Tranilast significantly reduced clinical and X-ray scores of arthritis and decreased numbers of TNF-a-positive mast cells and mRNA levels of TNF-a, chymase (mouse mast cell protease 4), tryptase (mouse mast cell protease 6), stem cell factor, interleukin-6, cathepsin-K, receptor activator of nuclear factor-kB, and of receptor activator of nuclear factor-kB-ligand, but increased interleukin-10 mRNA level in paws of arthritic mice. Osteoclast numbers were decreased by treatment with tranilast.
Conclusions and implications:Tranilast possesses significant anti-rheumatic efficacy and, probably, this therapeutic effect is partly mediated by inhibition of mast cell activation and osteoclastogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.