Long noncoding RNAs (lncRNAs) can compete with endogenous RNAs to modulate the gene expression and contribute to oncogenesis and tumor metastasis. lncRNA NKX2‐1‐AS1 (NKX2‐1 antisense RNA 1) plays a pivotal role in cancer progression and metastasis; however, the contribution of aberrant expression of NKX2‐1‐AS1 and the mechanism by which it functions as a competing endogenous RNA (ceRNA) in gastric cancer (GC) remains elusive. NKX2‐1‐AS1 expression was detected in paired tumor and nontumor tissues of 178 GC patients by quantitative reverse transcription PCR (qRT‐PCR). Using loss‐of‐function and gain‐of‐function experiments, the biological functions of NKX2‐1‐AS1 were evaluated both in vitro and in vivo. Further, to assess that NKX2‐1‐AS1 regulates angiogenic processes, tube formation and co‐culture assays were performed. RNA binding protein immunoprecipitation (RIP) assay, a dual‐luciferase reporter assay, quantitative PCR, Western blot, and fluorescence in situ hybridization (FISH) assays were performed to determine the potential molecular mechanism underlying this ceRNA. The results indicated that NKX2‐1‐AS1 expression was upregulated in GC cell lines and tumor tissues. Overexpression of NKX2‐1‐AS1 was significantly associated with tumor progression and enhanced angiogenesis. Functionally, NKX2‐1‐AS1 overexpression promoted GC cell proliferation, metastasis, invasion, and angiogenesis, while NKX2‐1‐AS1 knockdown restored these effects, both in vitro and in vivo. RIP and dual‐luciferase assays revealed that the microRNA miR‐145‐5p is a direct target of NKX2‐1‐AS1 and that NKX2‐1‐AS1 serves as a ceRNA to sponge miRNA and regulate angiogenesis in GC. Moreover, serpin family E member 1 (SERPINE1) is an explicit target for miR‐145‐5p; besides, the NKX2‐1‐AS1/miR‐145‐5p axis induces the translation of SERPINE1, thus activating the VEGFR‐2 signaling pathway to promote tumor progression and angiogenesis. NKX2‐1‐AS1 overexpression is associated with enhanced tumor cell proliferation, angiogenesis, and poor prognosis in GC. Collectively, NKX2‐1‐AS1 functions as a ceRNA to miR‐145‐5p and promotes tumor progression and angiogenesis by activating the VEGFR‐2 signaling pathway via SERPINE1.
Background
Chemoresistance posed a barrier to successful treatment of breast cancer (BC), and lncRNA MEG3 has been documented to implicate in BC development. However, whether MEG3 methylation, which led to low MEG3 expression, was relevant to BC progression and chemoresistance remained uncertain.
Methods
In the aggregate, 374 pairs of tumor tissues and adjacent normal tissues were collected from pathologically confirmed BC patients, and four BC cell lines, including MDA‐MB‐231, Bcap‐37, MCF‐7, and SK‐BR‐3, were purchased. Moreover, methylation‐specific polymerase chain reaction (PCR) was adopted to evaluate the methylation status of BC tissues and cell lines, and chemo‐tolerance of BC cell lines was assessed by performing MTT assay. Concurrently, transwell assay and scratch assay were carried out to estimate the migratory and invasive capability of BC cell lines.
Results
Methylated MEG3, lowly expressed MEG3, large tumor size (≥2 cm), advanced TNM grade and lymphatic metastasis were potentially symbolic of poor prognosis among BC patients (P < .05). Besides, MDA‐MB‐231 cell line exhibited the strongest resistance against paclitaxel, adriamycin, and vinorelbine (P < .05), while MCF‐7 cell line seemed more sensitive against these drugs than any other BC cell line (P < .05). Furthermore, pcDNA3.1‐MEG3 and 5‐Aza‐dC markedly sensitized MDA‐MB‐231 and MCF‐7 cell lines against the drug treatments (P < .05). Simultaneously, proliferation and metastasis of the BC cell lines were slowed down under the force of pcDNA3.1‐MEG3 and 5‐Aza‐dC (P < .05).
Conclusion
Preventing methylation of MEG3 might matter in lessening BC chemoresistance, owing to its hindering proliferation and metastasis of BC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.