Traditional methods for seismic damage evaluation require manual extractions of intensity measures (IMs) to properly represent the record-to-record variation of ground motions. Contemporary methods such as convolutional neural networks (CNNs) for time series classification and seismic damage evaluation face a challenge in training due to a huge task of ground-motion image encoding. Presently, no consensus has been reached on the understanding of the most suitable encoding technique and image size (width × height × channel) for CNN-based seismic damage evaluation. In this study, we propose and develop a new image encoding technique based on time-series segmentation (TS) to transform acceleration (A), velocity (V), and displacement (D) ground motion records into a three-channel AVD image of the ground motion event with a pre-defined size of width × height. The proposed TS technique is compared with two time-series image encoding techniques, namely recurrence plot (RP) and wavelet transform (WT). The CNN trained through the TS technique is also compared with the IM-based machine learning approach. The CNN-based feature extraction has comparable classification performance to the IM-based approach. WT 1,000 × 100 results in the highest 79.5% accuracy in classification while TS 100 × 100 with a classification accuracy of 76.8% is most computationally efficient. Both the WT 1,000 × 100 and TS 100 × 100 three-channel AVD image encoding methods are promising for future studies of CNN-based seismic damage evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.