OBJECTIVES Low-grade colonic mucosal inflammation has been postulated to have an important role in the pathophysiology of irritable bowel syndrome (IBS). The objectives of this study were (i) to identify serum and tissue-based immunological and neuroendocrine markers associated with mucosal inflammation in male (M) and female (F) patients with non-post-infectious IBS (non-PI-IBS) compared with healthy controls and (ii) to assess possible correlations of such markers with IBS symptoms. METHODS Sigmoid mucosal biopsies were obtained from 45 Rome II positive IBS patients without a history of PI-IBS (26 F, 35.5% IBS-C, 33.3% IBS-D, 31.1% IBS-A/M) and 41 healthy controls (22 F) in order to measure immunological markers (serum cytokine levels, colonic mucosal mRNA levels of cytokines, mucosal immune cell counts) and neuroendocrine markers associated with mucosal inflammation (corticotropin releasing factor- and neurokinin (NK)-related ligands and receptors, enterochromaffin cells). Symptoms were measured using validated questionnaires. RESULTS Of all the serum and mucosal cytokines measured, only interleukin-10 (IL-10) mRNA expression showed a group difference, with female, but not male, patients showing lower levels compared with female controls (18.0 ± 2.9 vs. 29.5 ± 4.0, P = 0.006). Mucosal mRNA expression of NK-1 receptor was significantly lower (1.15 ± 0.19 vs. 2.66 ± 0.56, P = 0.008) in female, but not male, patients compared with healthy controls. No other significant differences were observed. CONCLUSIONS Immune cell counts and levels of cytokines and neuropeptides that are associated with inflammation were not significantly elevated in the colonic mucosa of non-PI-IBS patients, and did not correlate with symptoms. Thus, these findings do not support that colonic mucosal inflammation consistently has a primary role in these patients. However, the finding of decreased IL-10 mRNA expression may be a possible biomarker of IBS and warrants further investigation.
Background and aims: Activation of corticotropin releasing factor 1 (CRF 1 ) receptors is involved in stress related responses and visceral pain, while activation of CRF 2 receptors dampens the endocrine and some behavioural stress responses. We hypothesised that CRF 2 receptor activation may influence visceral pain induced by colorectal distension (CRD) in conscious rats, and assessed the possible sites and mechanisms of action. Methods: Male Sprague-Dawley rats were exposed to CRDs (60 mm Hg, 10 minutes twice, with a 10 minute rest interval). Visceromotor responses (VMR) were measured by electromyography or visual observation. Spinal (L6-S1) extracellular signal regulated kinase 1/2 (ERK 1/2) activation following in vivo CRD and CRF 2 receptor gene expression in the T13-S1 dorsal root ganglia (DRG) and spinal cord were determined. Inferior splanchnic afferent (ISA) activity to CRD (0.4 ml, 20 seconds) was assessed by electrophysiological recording in an in vitro ISA nerve-inferior mesenteric artery (intra-arterial)-colorectal preparation. Results: In controls, VMR to the second CRD was mean 31 (SEM 4)% higher than that of the first (p,0.05). The selective CRF 2 agonist, human urocortin 2 (hUcn 2, at 10 and 20 mg/kg), injected intravenous after the first distension, prevented sensitisation and reduced the second response by 8 (1)% and 30 (5)% (p,0.05) compared with the first response, respectively. RT-PCR detected CRF 2 receptor gene expression in the DRG and spinal cord. CRD (60 mm Hg for 10 minutes) induced phosphorylation of ERK 1/2 in neurones of lumbosacral laminae I and IIo and the response was dampened by intravenous hUcn 2. CRD, in vitro, induced robust ISA spike activity that was dose dependently blunted by hUcn 2 (1-3 mg, intraarterially). The CRF 2 receptor antagonist, astressin 2 -B (200 mg/kg subcutaneously or 20 mg intraarterially) blocked the hUcn 2 inhibitory effects in vivo and in vitro. Conclusions: Peripheral injection of hUcn 2 blunts CRD induced visceral pain, colonic afferent, and spinal L6-S1 ERK 1/2 activity through CRF 2 receptor activation in rats.
Background & Aims Corticotropin-releasing factor receptor-1 (CRF1) mediates the stress-induced colonic motor activity. Less is known about the role of CRF2 in the colonic response to stress. Methods We studied colonic contractile activity (CCA) in rats and CRF2-/-, CRF-overexpressing, and wild-type mice using still manometry; we analyzed defecation induced by acute, partial-restraint stress (PRS), and/or intraperitoneal (IP) injection of CRF ligands. In rats, we monitored activation of the colonic longitudinal muscle myenteric plexus (LMMP) neurons and localization of CRF1 and CRF2 using immunohistochemical and immunoblot analyses. We measured phosphorylation of ERK1/2 by CRF ligands in primary cultures of LMMP-neurons (PC-LMMPn) and cAMP production in HEK-293 cells transfected with CRF1 and/or CRF2. Results In rats, a selective agonist of CRF2 (urocortin 2) reduced CRF-induced defecation (>50%), CCA, and Fos expression in the colonic LMMP. A selective antagonist of CRF2 (astressin2-B) increased these responses. Urocortin 2 reduced PRS-induced CCA in wild-type and CRF-overexpressing mice, whereas disruption of CRF2 increased PRS-induced CCA and CRF-induced defecation. CRF2 co-localized with CRF1 and neuronal nitric oxide synthase in the rat colon, LMMP, and PC-LMMPn. CRF-induced phosphorylation of ERK in PC-LMMPn; this was inhibited or increased by a selective antagonist of CRF1 (NBI35965) or astressin2-B, respectively. The EC50 for the CRF-induced cAMP response was 8.6 nM in HEK-293 cells that express only CRF1; this response was suppressed 10-fold in cells that express CRF1 and CRF2. Conclusions In colon tissues of rodents, CRF2 activation inhibits CRF1 signaling in myenteric neurons and the stress-induced colonic motor responses. Disruption of CRF2 function impairs colonic coping responses to stress.
The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.