FeSiBCCr amorphous powders were produced by a novel gas–water combined atomization process, and the corresponding MPCs (magnetic powder cores) were subsequently fabricated by phosphating treatment (0.4~1.6 wt.%), cold pressing (550~2350 MPa), and annealing (423~773 K), respectively. The results showed that the powders had high circularity, excellent thermal stability (ΔT = 59 K), and high saturation magnetization (0.83 T), which could provide raw powders for high-performance MPCs. With increasing phosphoric acid concentrations, despite the increase in DC-bias%, the uniformity of the insulation layers deteriorated, which led to a decrease in permeability and an increase in core loss. With increasing compaction pressures, the core loss increased continuously, and the permeability and DC-bias% first increased and then decreased. When annealing below the crystallization temperature, with increasing annealing temperatures, the permeability increased, and the core loss and DC-bias% decreased continuously. Under the optimized process of 0.4 wt.% phosphating concentration, 550 MPa pressure, and 773 K annealing temperature, the MPCs had a permeability of 21.54 ± 1.21, DC-bias% of 90.3 ± 0.2, and a core loss (Bm = 50 mT, f = 100 kHz) of 103.0 ± 26.3 mW cm−3. The MPCs had excellent high-frequency low-loss characteristics and showed great application potential under the development trends of high current, high power, and high frequency of electronic components.
Herein, a physical model with a geometric similarity ratio of 1:1 and a 3D numerical model of macrosegregation are established to study the initial metallurgy behavior of the 410 mm  530 mm section bloom continuous casting (CC). The results show that the average wave height, liquid surface velocity, and washing velocity of the five-port nozzle are greater than those of the straight nozzle, but the center temperature and the temperature gradient at the solidification front are lower. Meanwhile, the diagonally installed five-port nozzle can avoid the excessive washing effect under the orthogonally installed five-port nozzle, which improves the minimum subsurface negative segregation index, which is increased from 0.753 to 0.802. For the Steel 45 bloom CC process, when the straight nozzle is changed to the diagonally installed five-port nozzle, the length of the equiaxed crystal zone is increased from 97.5 to 198.5 mm, and the asymmetry of the solidification structure is improved.
The new generation of high-frequency and high-efficiency motors has high demands on the soft magnetic properties, mechanical properties and corrosion resistance of its core materials. Bulk amorphous and nanocrystalline alloys not only meet its performance requirements but also conform to the current technical concept of integrated forming. At present, spark plasma sintering (SPS) is expected to break through the cooling-capacity limitation of traditional casting technology with high possibility to fabricate bulk metallic glasses (BMGs). In this study, Fe84Si7B5C2Cr2 soft magnetic amorphous powders with high sphericity were prepared by a new atomization technology, and its characteristic temperature was measured by DSC to determine the SPS temperature. The SEM, XRD, VSM and universal testing machine were used to analyze the compacts at different sintering temperatures. The results show that the powders cannot be consolidated by cold pressing (50 and 500 MPa) or SPS temperature below 753 K (glass transition temperature Tg = 767 K), and the tap density is only 4.46 g·cm−3. When SPS temperature reached above 773 K, however, the compact could be prepared smoothly, and the density, saturation magnetization, coercivity and compressive strength of the compacts increased with the elevated sintering temperature. In addition, due to superheating, crystallization occurred even when the sintering temperature was lower than 829 K (with the first crystallization onset temperature being Tx1 = 829 K). The compact was almost completely crystallized at 813 K, resulting in a sharp increase in the coercivity of the compact from 55.55 A·m−1 at 793 K to 443.17 A·m−1. It is noted that the nanocrystals kept growing in size as the temperature increased to 833 K, which increased the coercivity remarkably but showed an enhanced saturation magnetization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.