Promoted by the demand for solid lubricants, graphene has been proved to be a promising material for potential applications in reducing friction and wear. Here, a novel lubricating system where graphene sliding against graphene is developed to achieve low friction in macroscale contact. And the large area graphene film used here were prepared by a unique self-assembly technique based on Marangoni effect. Low friction coefficient of about 0.05 is obtained, and it is demonstrated that the film thickness, applied normal load and annealing process all have important influences on the tribological properties of graphene. The expedient fabrication procedure of large-area graphene film with excellent transferability and high-performance friction-reducing behaviors of the developed lubricating system both have a promising perspective in engineering applications.
Graphene is a promising material as a lubricant additive for reducing friction and wear. Here, a dispersing method which combines chemical modification of graphene by octadecylamine and dicyclohexylcarbodiimide with a kind of effective dispersant has been successfully developed to achieve the remarkable dispersion stability of graphene in base oil. The stable dispersion time of modified graphene (0.5 wt%) with dispersant (1 wt%) in PAO-6 could be up to about 120 days, which was the longest time reported so far. At the same time, the lubricant exhibits a significant improvement of tribological performance for a steel ball to plate tribo-system with a normal load of 2 N. The coefficient of friction between sliding surfaces was ~0.10 and the depth of wear track on plate was ~21 nm, which decreased by about 44% and 90% when compared to pure PAO-6, respectively. Furthermore, the analysis of the lubricating mechanisms in regard to the sliding-induced formation of nanostructured tribo-film has been contacted by using Raman spectra and TEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.