AP2 transcription factors play a crucial role in plant development and reproductive growth, as well as response to biotic and abiotic stress. However, the role of TaAP2-15, in the interaction between wheat and the stripe fungus, Puccinia striiformis f. sp. tritici (Pst), remains elusive. In this study, we isolated TaAP2-15 and characterized its function during the interaction. TaAP2-15 was localized in the nucleus of wheat and N. benthamiana. Silencing of TaAP2-15 by barley stripe mosaic virus (BSMV)-mediated VIGS (virus-induced gene silencing) increased the susceptibility of wheat to Pst accompanied by enhanced growth of the pathogen (number of haustoria, haustorial mother cells and hyphal length). We confirmed by quantitative real-time PCR that the transcript levels of pathogenesis-related genes (TaPR1 and TaPR2) were down-regulated, while reactive oxygen species (ROS)-scavenging genes (TaCAT3 andTaFSOD3D) were induced accompanied by reduced accumulation of H2O2. Furthermore, we found that TaAP2-15 interacted with a zinc finger protein (TaRZFP34) that is a homolog of OsRZFP34 in rice. Together our findings demonstrate that TaAP2-15 is positively involved in resistance of wheat to the stripe rust fungus and provides new insights into the roles of AP2 in the host-pathogen interaction.
Sugar efflux from host plants is essential for pathogen survival and proliferation. Sugar transporter-mediated redistribution of host sugar contributes to the outcomes of plantpathogen interactions. However, few studies have focused on how sugar translocation is strategically manipulated during host colonization.To elucidate this question, the wheat sugar transport protein (STP) TaSTP3 responding to Puccinia striiformis f. sp. tritici (Pst) infection was characterized for sugar transport properties in Saccharomyces cerevisiae and its potential role during Pst infection by RNA interference and overexpression in wheat. In addition, the transcription factors regulating TaSTP3 expression were further determined.The results showed that TaSTP3 is localized to the plasma membrane and functions as a sugar transporter of hexose and sucrose. TaSTP3 confers enhanced wheat susceptibility to Pst, and overexpression of TaSTP3 resulted in increased sucrose accumulation and transcriptional suppression of defense-related genes. Furthermore, TaWRKY19, TaWRKY61 and TaWRKY82 were identified as positive transcriptional regulators of TaSTP3 expression.Our findings reveal that the Pst-induced sugar transporter TaSTP3 is transcriptionally activated by TaWRKY19/61/82 and facilitates wheat susceptibility to stripe rust possibly through elevated sucrose concentration, and suggest TaSTP3 as a strong target for engineering wheat resistance to stripe rust.
Summary
The early development of a rust fungus is dependent on the endogenous lipids stored in the urediniospores. After it establishes a parasitic relationship with the host, sugars absorbed from the host cells by haustoria become the primary nutrients. The tricarboxylic acid (TCA) cycle is essential to oxidize these nutrients. However, few studies have addressed the role of citrate synthase (CS), a rate‐limiting enzyme of the TCA cycle, during the infection process of rust fungi. In this study, a CS gene from Puccinia striiformis f. sp. tritici (Pst), PsCS1, was cloned and characterized. Transcripts of PsCS1 and the enzyme activity of the CS were increased in the early Pst infection stage. Biochemical features and subcellular localization revealed that PsCS1 encoded a mitochondrial CS. Size exclusion chromatography, yeast two‐hybrid and bimolecular fluorescence complementation experiments confirmed that PsCS1 could form a functional homo‐octamer. The overexpression of PsCS1 enhanced the resistance of Escherichia coli to salt stress. The knockdown of PsCS1 using a host‐induced gene silencing (HIGS) system blocked Pst growth in wheat. These results indicate that PsCS1 is required for nutrient metabolism in Pst and contributes to Pst infection by regulating ATP production and the supply of carbon sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.