Glucotoxicity or lipotoxicity leads to hyperglycemia and insulin secretion deficiency, which are important causes for the onset of type 2 diabetes mellitus (T2DM). Thus, the restoration of β‐cell function is a long‐sought goal in diabetes research. Previous studies have implicated pancreatic and duodenal homeobox 1 gene (Pdx1) in β‐cell function and insulin secretion. In this study, we established a Pdx1 promoter‐dependent luciferase system and identified the natural compound dracorhodin perchlorate (DP) as an effective promotor of Pdx1 expression. We further demonstrated that DP could significantly inhibit β‐cell apoptosis induced by 33 mm glucose or 200 μm palmitate by interfering with endoplasmic reticulum stress and mitochondrial pathways and enhance insulin secretion as well. These effects were associated with enhanced activities of Erk1/2, which in turn promoted Pdx1 expression and increased the ratio of Bcl2/Bax, since inhibition of the Erk1/2 pathway abolished the DP‐induced expression of Pdx1 and suppression of apoptosis. In addition, our in vivo results in diabetic mice indicated that DP treatment lowered blood glucose, raised insulin levels, enhanced Pdx1 expression and increased islet size and number in the pancreas of diabetic mice. Our findings suggest that Pdx1 is a potential target molecule of DP in the treatment of T2DM via the inhibition of glucotoxicity‐ or lipotoxicity‐ induced β‐cell apoptosis and the attenuation of insulin secretion dysfunction.
Receptor interacting protein kinase 3 (RIP3 or RIPK3), the critical executor of cell programmed necrosis, plays essential roles in maintaining immune responses and appropriate tissue homeostasis. Although the E3 ligases CHIP and PELI1 are reported to promote RIP3 degradation, however, how post-translational modification regulates RIP3 activity and stability is poorly understood. Here, we identify the tripartite motif protein TRIM25 as a negative regulator of RIP3-dependent necrosis. TRIM25 directly interacts with RIP3 through its SPRY domain and mediates the K48-linked polyubiquitination of RIP3 on residue K501. The RING domain of TRIM25 facilitates the polyubiquitination chain on RIP3, thereby promoting proteasomal degradation of RIP3. Also, TRIM25 deficiency inhibited the ubiquitination of RIP3, thus promoting TNF-induced cell necrosis. Our current finding reveals the regulating mechanism of polyubiquitination on RIP3, which might be a potential therapeutic target for the intervention of RIP3-dependent necrosis-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.