Currently, several deep-rooted researches have focused on the significance and application of polymers in electrical and mechanical fields. This is because of the benefits of polymers in its availability, recyclability, and flexibility in processing; economical and most importantly improvement in material property have been achieved by incorporating nanosized metal oxide (inorganic) additives in the polymer matrix. In this study, HDPE (High Density Polyethylene) is considered as base polymer and alumina as nanoadditive. Alumina (Al2O3) nanofillers are incorporated in HDPE as 1 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% filler compositions. From the dielectric analysis, it has been inferred that HDPE with 3 wt.% nanoalumina achieved higher permittivity compared with other samples. Also, 5 wt.% composite samples has gained 18.46% improvement in inception voltage, 16.3% increase in the breakdown strength, and 94.47% enhanced thermal conductivity compared with pure HDPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.