A magnetically controlled spiral capsule robot is designed. When the robot is running in a pipe filled with mucus, computational fluid dynamics is used to analyze the fluid field (velocity, streamlines, and vorticity) in the pipe, and particle image velocimetry is used to measure the above fluid field surrounding the robot. The measured fluid field is basically similar to the numerical result. The relationship between the operating parameters of the robot and the performance of the robot is further calculated and analyzed. The results show that the resistance to the robot in the forward direction, average turbulent intensity of the fluid surrounding the robot, and maximum fluid pressure to the pipe wall are proportional to the robotic translational speed. The resisting moment of the robot in the forward direction, average turbulent intensity of the fluid surrounding the robot, and maximum fluid pressure to the pipe wall are proportional to the robotic rotational speed.
Magnetically controlled capsule robots are predominantly used in the diagnosis and treatment of the human gastrointestinal tract. In this study, based on the permanent magnet method, magnetic driving and fluid measurement systems for in-pipe capsule robots were established. Using computational fluid dynamics (CFD) and particle image velocimetry (PIV), the fluid velocity and vorticity in the pipe of the capsule robot were calculated and measured. The running characteristics of the capsule robot were numerically analyzed in the curved pipe and the peristaltic flow. Furthermore, the range and variance method of orthogonal design was used to analyze the influence of four typical parameters (namely, pipe diameter, robotic translational speed, robotic rotational speed, and fluid viscosity) on the three operating performance indicators of the capsule robot (namely, the forward resistance of the robot, fluid turbulent intensity near the robot, and maximum fluid pressure to the pipe wall). In this paper, the relative magnitude and significance of the influence of each typical parameter on different performance indicators of the robot are presented. According to the different performance requirements of the robot, the different four parameter combinations are optimized. It is hoped that this work provides a reference for the selection of the appropriate mucus, translational speed, and rotational speed of the robot when it is working in pipes with different diameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.