BACKGROUND AND PURPOSEThe KCa3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of KCa3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses. EXPERIMENTAL APPROACHWe characterized the benzothiazinone NS6180 (4- [[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) with respect to potency and molecular site of action on KCa3.1 channels, selectivity towards other targets, effects on T-cell activation as well as pharmacokinetics and inflammation control in colitis induced by 2,4-dinitrobenzene sulfonic acid, a rat model of inflammatory bowel disease (IBD). KEY RESULTSNS6180 inhibited cloned human KCa3.1 channels (IC50 = 9 nM) via T250 and V275, the same amino acid residues conferring sensitivity to triarylmethanes such as like TRAM-34. NS6180 inhibited endogenously expressed KCa3.1 channels in human, mouse and rat erythrocytes, with similar potencies (15-20 nM). NS6180 suppressed rat and mouse splenocyte proliferation at submicrolar concentrations and potently inhibited IL-2 and IFN-g production, while exerting smaller effects on IL-4 and TNF-a and no effect on IL-17 production. Antibody staining showed KCa3.1 channels in healthy colon and strong up-regulation in association with infiltrating immune cells after induction of colitis. Despite poor plasma exposure, NS6180 (3 and 10 mg·kg -1 b.i.d.) dampened colon inflammation and improved body weight gain as effectively as the standard IBD drug sulfasalazine (300 mg·kg -1 q.d.).
Cancer pathogenesis involves the interplay of tumor- and microenvironment-derived stimuli. Here we focused on the influence of an immunomodulatory cell type, myeloid-derived suppressor cells (MDSCs), and their lineage-related subtypes on autologous T lymphocytes. Although MDSCs as a group correlated with an immunosuppressive Th repertoire and worse clinical course, MDSC subtypes (polymorphonuclear, PMN-MDSC, and monocytic, M-MDSCs) were often functionally discordant. In vivo, PMN-MDSCs existed in higher numbers, correlated with different Th-subsets, and more strongly associated with poor clinical course than M-MDSCs. In vitro, PMN-MDSCs were more efficient at blocking T-cell growth and promoted Th17 differentiation. Conversely, in vitro M-MDSCs varied in their ability to suppress T-cell proliferation, due to the action of TNFα, and promoted a more immunostimulatory Th compartment. Ibrutinib therapy impacted MDSCs differentially as well, since after initiating therapy, PMN-MDSC numbers progressively declined, whereas M-MDSC numbers were unaffected, leading to a set of less immunosuppressive Th cells. Consistent with this, clinical improvement based on decreasing CLL-cell numbers correlated with the decrease in PMN-MDSCs. Collectively, the data support a balance between PMN-MDSC and M-MDSC numbers and function influencing CLL disease course.
Patients surviving a septic episode exhibit persistent immune impairment and increased mortality due to enhanced vulnerability to infections. In the present study, using the cecal ligation and puncture (CLP) model of polymicrobial sepsis, we addressed the hypothesis that altered vagus nerve activity contributes to immune impairment in sepsis survivors. CLP-surviving mice exhibited less TNFα in serum following administration of LPS, a surrogate for an infectious challenge, than control-operated (control) mice. To evaluate the role of the vagus nerve in the diminished response to LPS, mice were subjected to bilateral subdiaphragmatic vagotomy at 2 weeks post-CLP. CLP-surviving vagotomized mice exhibited increased serum and tissue TNFα levels in response to LPS-challenge compared to CLP-surviving, non-vagotomized mice. Moreover, vagus nerve stimulation in control mice diminished the LPS-induced TNFα responses while having no effect in CLP mice, suggesting constitutive activation of vagus nerve signaling in CLP-survivors. The percentage of splenic CD4+ ChAT-EGFP+ T cells that relay vagus signals to macrophages was increased in CLP-survivors compared to control mice, and vagotomy in CLP-survivors resulted in a reduced percentage of ChAT-EGFP+ cells. Moreover, CD4 knockout CLP-surviving mice exhibited an enhanced LPS-induced TNFα response compared to wild-type mice, supporting a functional role for CD4+ ChAT+ T cells in mediating inhibition of LPS-induced TNFα responses in CLP-survivors. Blockade of the cholinergic anti-inflammatory pathway with methyllcaconitine, an α7 nicotinic acetylcholine receptor antagonist, restored LPS-induced TNFα responses in CLP-survivors. Our study demonstrates that the vagus nerve is constitutively active in CLP-survivors and contributes to the immune impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.