New York City (NYC) was an epicenter of the coronavirus disease 2019 (COVID-19) outbreak in the United States during spring 2020 (1). During March-May 2020, approximately 203,000 laboratory-confirmed COVID-19 cases were reported to the NYC Department of Health and Mental Hygiene (DOHMH). To obtain more complete data, DOHMH used supplementary information sources and relied on direct data importation and matching of patient identifiers for data on hospitalization status, the occurrence of death, race/ethnicity, and presence of underlying medical conditions. The highest rates of cases, hospitalizations, and deaths were concentrated in communities of color, high-poverty areas, and among persons aged ≥75 years or with underlying conditions. The crude fatality rate was 9.2% overall and 32.1% among hospitalized patients. Using these data to prevent additional infections among NYC residents during subsequent waves of the pandemic, particularly among those at highest risk for hospitalization and death, is critical. Mitigating COVID-19 transmission among vulnerable groups at high risk for hospitalization and death is an urgent priority. Similar to NYC, other jurisdictions might find the use of supplementary information sources valuable in their efforts to prevent COVID-19 infections. This report describes cases of laboratory-confirmed COVID-19 among NYC residents diagnosed during February 29-June 1, 2020, that were reported to DOHMH. DOHMH began COVID-19 surveillance in January 2020 when testing capacity for SARS-CoV-2 (the virus that causes COVID-19) using real-time reverse transcription-polymerase chain reaction (RT-PCR) was limited by strict testing criteria because of limited test availability only through CDC. The NYC and New York State public health laboratories began testing hospitalized patients at the end of February and early March. DOHMH encouraged patients with mild symptoms to remain at home rather than seek health care because of shortages of personal protective equipment and laboratory tests at hospitals and clinics. Commercial laboratories began testing for SARS-CoV-2 in mid-to late March. During February 29-March 15, patients with laboratory-confirmed COVID-19 were interviewed by DOHMH, and close contacts were identified for monitoring. The rapid rise in laboratory-confirmed cases (cases) quickly made interviewing all patients, as well as contact tracing, unsustainable. Subsequent case investigations
ObjectivesAs gentrification continues in New York City as well as other urban areas, residents of lower socioeconomic status maybe at higher risk for residential displacement. Yet, there have been few quantitative assessments of the health impacts of displacement. The objective of this paper is to assess the association between displacement and healthcare access and mental health among the original residents of gentrifying neighborhoods in New York City.MethodsWe used 2 data sources: 1) 2005–2014 American Community Surveys to identify gentrifying neighborhoods in New York City, and 2) 2006–2014 Statewide Planning and Research Cooperative System. Our cohort included 12,882 residents of gentrifying neighborhoods in 2006 who had records of emergency department visits or hospitalization at least once every 2 years in 2006–2014. Rates of emergency department visits and hospitalizations post-baseline were compared between residents who were displaced and those who remained.ResultsDuring 2006–2014, 23% were displaced. Compared with those who remained, displaced residents were more likely to make emergency department visits and experience hospitalizations, mainly due to mental health (Rate Ratio = 1.8, 95% confidence interval = 1.5, 2.2), after controlling for baseline demographics, health status, healthcare utilization, residential movement, and the neighborhood of residence in 2006.ConclusionsThese findings suggest negative impacts of displacement on healthcare access and mental health, particularly among adults living in urban areas and with a history of frequent emergency department visits or hospitalizations.
Introduction:Electronic health records (EHRs) offer potential for population health surveillance but EHR-based surveillance measures require validation prior to use. We assessed the validity of obesity, smoking, depression, and influenza vaccination indicators from a new EHR surveillance system, the New York City (NYC) Macroscope. This report is the second in a 3-part series describing the development and validation of the NYC Macroscope. The first report describes in detail the infrastructure underlying the NYC Macroscope; design decisions that were made to maximize data quality; characteristics of the population sampled; completeness of data collected; and lessons learned from doing this work. This second report, which addresses concerns related to sampling bias and data quality, describes the methods used to evaluate the validity and robustness of NYC Macroscope prevalence estimates; presents validation results for estimates of obesity, smoking, depression and influenza vaccination; and discusses the implications of our findings for NYC and for other jurisdictions embarking on similar work. The third report applies the same validation methods described in this report to metabolic outcomes, including the prevalence, treatment and control of diabetes, hypertension and hyperlipidemia.Methods:NYC Macroscope prevalence estimates, overall and stratified by sex and age group, were compared to reference survey estimates for adult New Yorkers who reported visiting a doctor in the past year. Agreement was evaluated against 5 a priori criteria. Sensitivity and specificity were assessed by examining individual EHR records in a subsample of 48 survey participants.Results:Among adult New Yorkers in care, the NYC Macroscope prevalence estimate for smoking (15.2%) fell between estimates from NYC HANES (17.7 %) and CHS (14.9%) and met all 5 a priori criteria. The NYC Macroscope obesity prevalence estimate (27.8%) also fell between the NYC HANES (31.3%) and CHS (24.7%) estimates, but met only 3 a priori criteria. Sensitivity and specificity exceeded 0.90 for both the smoking and obesity indicators. The NYC Macroscope estimates of depression and influenza vaccination prevalence were more than 10 percentage points lower than the estimates from either reference survey. While specificity was > 0.90 for both of these indicators, sensitivity was < 0.70.Discussion:Through this work we have demonstrated that EHR data from a convenience sample of providers can produce acceptable estimates of smoking and obesity prevalence among adult New Yorkers in care; gained a better understanding of the challenges involved in estimating depression prevalence from EHRs; and identified areas for additional research regarding estimation of influenza vaccination prevalence. We have also shared lessons learned about how EHR indicators should be constructed and offer methodologic suggestions for validating them.Conclusions:This work adds to a rapidly emerging body of literature about how to define, collect and interpret EHR-based surveillance measures and...
Introduction:Electronic health records (EHRs) can potentially extend chronic disease surveillance, but few EHR-based initiatives tracking population-based metrics have been validated for accuracy. We designed a new EHR-based population health surveillance system for New York City (NYC) known as NYC Macroscope. This report is the third in a 3-part series describing the development and validation of that system. The first report describes governance and technical infrastructure underlying the NYC Macroscope. The second report describes validation methods and presents validation results for estimates of obesity, smoking, depression and influenza vaccination. In this third paper we present validation findings for metabolic indicators (hypertension, hyperlipidemia, diabetes).Methods:We compared EHR-based estimates to those from a gold standard surveillance source - the 2013–2014 NYC Health and Nutrition Examination Survey (NYC HANES) - overall and stratified by sex and age group, using the two one-sided test of equivalence and other validation criteria.Results:EHR-based hypertension prevalence estimates were highly concordant with NYC HANES estimates. Diabetes prevalence estimates were highly concordant when measuring diagnosed diabetes but less so when incorporating laboratory results. Hypercholesterolemia prevalence estimates were less concordant overall. Measures to assess treatment and control of the 3 metabolic conditions performed poorly.Discussion:While indicator performance was variable, findings here confirm that a carefully constructed EHR-based surveillance system can generate prevalence estimates comparable to those from gold-standard examination surveys for certain metabolic conditions such as hypertension and diabetes.Conclusions:Standardized EHR metrics have potential utility for surveillance at lower annual costs than surveys, especially as representativeness of contributing clinical practices to EHR-based surveillance systems increases.
IntroductionElectronic health record (EHR) systems provide an opportunity to use a novel data source for population health surveillance. Validation studies that compare prevalence estimates from EHRs and surveys most often use difference testing, which can, because of large sample sizes, lead to detection of significant differences that are not meaningful. We explored a novel application of the two one-sided t test (TOST) to assess the equivalence of prevalence estimates in 2 population-based surveys to inform margin selection for validating EHR-based surveillance prevalence estimates derived from large samples.MethodsWe compared prevalence estimates of health indicators in the 2013 Community Health Survey (CHS) and the 2013–2014 New York City Health and Nutrition Examination Survey (NYC HANES) by using TOST, a 2-tailed t test, and other goodness-of-fit measures.ResultsA ±5 percentage-point equivalence margin for a TOST performed well for most health indicators. For health indicators with a prevalence estimate of less than 10% (extreme obesity [CHS, 3.5%; NYC HANES, 5.1%] and serious psychological distress [CHS, 5.2%; NYC HANES, 4.8%]), a ±2.5 percentage-point margin was more consistent with other goodness-of-fit measures than the larger percentage-point margins.ConclusionA TOST with a ±5 percentage-point margin was useful in establishing equivalence, but a ±2.5 percentage-point margin may be appropriate for health indicators with a prevalence estimate of less than 10%. Equivalence testing can guide future efforts to validate EHR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.