Wood products provide a relatively long-term carbon storage mechanism. Due to lack of consistent datasets on these products, however, it is difficult to determine their carbon contents. The main purpose of this study was to quantify forest disturbance and timber product output (TPO) using time series Landsat observations for North Carolina. The results revealed that North Carolina had an average forest disturbance rate of 178,000 ha per year from 1985 to 2010. The derived disturbance products were found to be highly correlated with TPO survey data, explaining up to 87% of the total variance of county level industrial roundwood production. State level TPO estimates derived using the Landsat-based disturbance products tracked those derived from ground-based survey data closely. The TPO modeling approach developed in this study complements the ground-based TPO surveys conducted by the US Forest Service. It allows derivation of TPO estimates for the years that did not have TPO survey data, and may be applicable in other regions or countries where at least some ground-based survey data on timber production are available for model development and dense time series Landsat observations exist for developing annual forest disturbance products.
To mitigate and adapt to climate change, forest carbon sequestration and diversity of the ecosystem must be included in forest management planning, while satisfying the demand for wood products. The future provisions of ecosystem services under six realistic management scenarios were assessed to achieve that goal. These services were carbon sequestration, types and quantities of roundwood harvested, and different indicators of forest health—biomass of major species, species diversity, and variation of tree age. A spatially explicit forest succession model was combined with statistical analyses to conduct the assessment at the level of both the whole forest landscape and different ecological zones (ecozones) within. An important aspect of this study was to explore the effects of the biophysical heterogeneity of different ecological zones on the outcomes of different management scenarios. The study area was located in an area of the southern Appalachian Mountains in North Carolina with high tree diversity and active forest management activities. Along with a range of management practices, such richness in diversity allowed us to examine the complexity of the interaction between management activities and species competition. The results showed that fire suppression had a greater effect on increasing biomass carbon sequestration than any management scenario that involves harvest and replanting afterward, but at the expense of other indicators of forest health. The effect of fire on species composition was the largest in the xeric parts of the study area. Based on the study results, it was proposed that a low harvest intensity with a mix of fire and fire suppression across the landscape would best balance the need for roundwood products, biomass carbon sequestration, and desirable species composition. This study also demonstrated that the combination of a spatially explicit forest succession model and statistical analyses could be used to provide a robust and quantifiable projection of ecosystem service provisions and possible trade‐offs under different management scenarios.
Forest regeneration can be a low-cost solution to mitigate climate change, and mapping its extent can support global goals such as the Bonn Challenge, which set a goal to put 350 million hectares of degraded forests and landscapes into restoration by 2030. Our study combined multiple remote sensing datasets and expert surveys, identifying $55.7 +/- 6.2$ million hectares of likely regenerated forests between 2000 and 2015 across areas that were not forested before 2000 and have remained forested from 2015 to 2018. The identified forest regeneration could potentially represent 22-25 billion young trees and a total biomass of about 3.2 billion tonnes. Forest regeneration took place in sites with less opportunity cost for agriculture for every country, but in more developed regions, forest regeneration took place in sites with higher suitability for cultivation. Expert feedback associated agricultural land use transitions and the establishment of protected areas, coupled with effective management and local support, as the key factors leading to successful forest regeneration. The results, publicly available, can facilitate discussions and help identify strategic locations to foster forest regeneration to achieve the global goals of mitigating climate change and restoring biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.